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Optimal Microgravity Vibration
Isolation: An Algebraic

Introduction

I

R.D. Hampton, 2 C. M. Grodsinsky, s P. E. Allaire, 2 D.W. Lewis, 2

and C. R. Knospe:

Abstract

Certain experiments contemplated for space platforms must be isolated from the accel-
erations of the platform. In this paper an optimal active control is developed for micro-
gravity vibration isolation, using constant state feedback gains (identical to those obtained
from the Linear Quadratic Regulator [LQR] approach) along with constant feedforward
(preview) gains.

The quadratic cost function for this control algorithm effectively weights accelerations
of the platform due to external disturbances by a factor proportional to (1/_o)2. Low fre-
quency accelerations (less than 50 Hz) are attenuated by greater than two orders of magni-
tude. The control relies on the absolute position and velocity feedback of the experiment
and the absolute position and velocity feed-forward of the platform, and generally derives
the stability robustness characteristics guaranteed by the LQR approach to optimality.

The method as derived is extendable to the case in which only the relative positions
and the absolute accelerations of the experiment and space platform are available.

Introduction

A space platform experiences local, low frequency accelerations (0.01-30 Hz)

due to equipment motions and vibrations, and to crew activity [1, 2], as indicated

in Fig. I [3]. Certain experiments, such as the growth of isotropic crystals, re-

quire an environment in which the accelerations amount to only a few micro-g's

[4]. (See Fig. 2 [2].) Microgravity requirements to accommodate such experi-
ments have been specified for Space Station Freedom (SSF). (Fig. 13 [2] Such an

environment is not presently available on manned space platforms [2].

1Presented at the Workshop on Aerospace Applications of Magnetic Suspension Technology,

September 25-27, 1990, under the title "Microgravity Vibration Isolation: An Optimal Control
Law for the One-Dimensional Case."

2Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville,
VA 22901.

1NASA Lewis Research Center, Cleveland. OH 44135.
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FIG. I.
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SSF Microgravity Requirements and Anticipated Acceleration Environment.

Since the experiment and space platform centers of gravity do not coincide, a

means is needed to prevent the experiment from drifting into its own orbital

motion and into the space platform wall. Additionally, some experiments require

umbilicals to provide power, experiment control, coolant flow, communications
linkage, or other services. Unfortunately, such measures also mean that unwanted

platform accelerations will be transmitted to the experiments. This necessitates

experiment isolation. Passive isolators, however, cannot compensate for umbilical

stiffness, nor deal adequatelY with direct disturbances, nor can they achieve low
enough corner frequencies even if umbilicals are absent [5]. Active isolation is
therefore essential.

The problem, then, is to design an active isolation system to minimize these

undesired acceleration transmissions for a tethered payload, while achieving ade-

quate stability margins and system robustness. Spatial and control energy limita-
tions must also be accommodated. Although microgravity isolation systems have

been developed and tested [6], no controller offered to date takes into account

the effect of umbilicais in isolator control design [7].

Mathematical Model

The general problem has three translational and three rotational degrees of
freedom. For simplicity, however, this analysis will consider only the one-dimen-

sional problem. The general problem could be treated in an analogous manner.

I
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FIG. 2. Experiment Isolation Requirements (Tolerable g-level as a Function of Frequency for

a Variety of Materials Science Experiments as Predicted by Order-of-Magnitude Analysis for a

Single-Frequency Disturbance [after Demel, 1986, from Nelson, 1991]).

Let the experiment be modeled as a mass m, with position x(t). Assume that the

space station has position d(t), and that umbilicais with stiffness k and damping

c connect the experiment and space station. Suppose further that a magnetic ac-

tuator applies a control force proportional to the applied current i(t), with pro-

portionality constant a. Such a model is shown in Fig. 3.
The system equation of motion is

m._ + c(,_ - el) + k(x - d) + a i = 0 (1)

U

Station ,_ m

Actuator I

"l/1/I//Ill////IN/////////

_ d(t) ---'- x(t)

FIG. 3. System Model.
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Division by rn and rearrangement yields

k
._ = --(x - d) - c(._ _ ,}) _ __q_ai

m m m

In state space notation this becomes

where

_t = Ax + bu + f

{x,}
X2

°'1k c , b=

m m

u=i, f= d+

i= _2 = ,

(2)

(3)

The objective is to minimize the acceleration 5?(t).

Optimal Control Problem

The optimal control problem is that of determining the control current u(t) =

i(t) which minimizes a suitable performance index

J = J(x, u, t) (4)

for the system described by equation (3) subject to the state variable conditions

x(0) = Xo (Sa)
i

lim x(t) = 0 (5b)

Another reasonable condition is that f(t) is bounded, and it will be found mathe-

matically advantageous to assume that f(t) is also a dwindling function:

_im f_t) = 0 (5c)

In actuality, f(t) is not dwindling, and so neither is x(t). However, for bounded

f(t) (and a controllable system [8] such as this), the optimal controller developed

in this paper has only a vanishing dependence on f(t) for times in the distant fu-

ture; and it depends on x(t) only in a causal fashion. Further, with only minor

changes in the performance index [9] (and more complicated mathematics) the

dwindling assumptions can be removed without affecting the resulting control,
using the basic method of the present paper. [Tomizuka's dynamic programming

approach to the command-following problem leads to corresponding results [10].]
Hence, the above simplifying assumptions are justified.

A quadratic performance index

f-1 [xrWix + w_u'-]dt (6)
1=7,

J
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has been chosen, as one that lends itself well to the variational approach to opti-

mal controls, since an analytical solution is desired. The upper limit of the defi-

nite integral has been selected so as to yield a time-invariant controller. Here W_

is a square 2 × 2 constant weighting matrix while w_ is a weighting constant.

Although W_ could be a full 2 x 2 matrix, for this problem a diagonal form

has been employed for the sake of simplicity.

[o 0]w, = " (7)
Wlb

The performance index consequently reduces to

I1 [wl_x_ + w,bx_ + w3u_']dt, (8)
1=y,

so that each state is weighted independently.

If sinusoidal motion of the experiment is considered, so that

x(t) = Bt sin wt

and 2(0 = -_o2x(t), the cost function can be expressed in terms of the accelera-
tion and control as

11=[(_2 _ __.b) ]J = _ , + B(£ z + w3u:. dt (9)

It is apparent that this performance index conveniently weights accelerations at

low frequencies much more than at higher frequencies.

Solution

Finding the optimal control to minimize equation (4) is a variational problem

of Lagrange, for which the initial steps of the solution are well-known (e.g.,

Elbert [11]). The variational approach is outlined below, following which the

complications added by the nonhomogeneous term f(t) will be addressed. Cur-

rent optimal control texts either assume that f(t) - 0 (e.g., [11], p. 262) or re-

quire that it have a restricted range space (e.g., [12], p. 238). The solution that

follows provides an analytical optimal without imposing such restrictions.
The argument of the cost function J from equation (6) is augmented by the

Lagrange multiplier A times the system equation of motion (3) where

{A,} (10)A= Az

The result f can be expressed as

where the Hamiltonian H is

fro _
= Hdt (ll)

1

H = -}-(xrW_x + w3u-') + Xr(,i - Ax - bu - f)

It is desired to obtain an optimal solution u = u* which minimizes ].

(12)

m
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^

The first variation of J(x, u, i) is

OH OH ]_0 L0x 0u -_-

which is set equal to zero to minimize s_ However, integrating by parts,

J'0®(--_/5:x) dt = -fo®(_r_$x)dt

so that the above expression for 83 becomes

&_ = f OH_Ar 8x +--3u dt = 0

Jo [_0x au

Both 6x and 6u are arbitrary variations, so 6J = 0 only if

aH jtr
0x

(13)

(14a)

OH

Ou

The conditions given by equation (5) still apply.

Solving equations (14a) and (14b) yields

_= W,x- Aa

.,=±XTb=LbTA
W3 W3

Temporarily eliminating u* produces the result

where

(14b)

(15a)

(15b)

(16)

Wi -A r J

If :quation (16) is now solved for 3t in terms of x and f, equation (15b) will then

furnish an expression for the optimal control u*.

As noted before, optimal control texts generally treat the homogeneous prob-

lem (where f(t) = 0), but they do not provide an analytical solution to the non-

homogeneous system described by equations (5) and (16). Salukvadze has treated

the non homogeneous problem [13, 14], but his difficult treatment seems largely to

have remained either uncomprehended or under-appreciated. This method is es-

pecially well-suited to low-frequency disturbance rejection, and has been applied

below to the present problem.

g
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and

]-1,3 = --]Zl

/x4 = -/z2

where /3_ and/32 are defined as follows:

2k
fl_-

m

C 2 OtWlb

m 2 row3

The eigenvectors of,_ corresponding to the respective eigenvalues _k may be
chosen to be

1

Pk = r_+ y__2+ y,(y,+#_) (20a)
Iz_ y_ Y3

_/'1 + (72 + _'£k)J'tk

Y3

where y_, Yz, Y3, and y_ aredefined below:

k
y_ = -- (20b)

m

¢

y2 = -- (20c)
m

_2

Y3 = (20d)
214/3

y4 = wla (20e)

Using equations (18) through (20) with equalion (17) the solution to the homoge-

(18b)

(18c)

(18d)

(19a)

The homogeneous solution to equation (15), where f = 0, is

./:/A h = (17)

The four eigenvalues of A may be found to be, in ascending order of real parts,

,u_ = -(-/3_ + (/3_ - 4/3:)':zf 'z2 (18a)

/z2 = --(--fl' -- (J32- 413_)':2) ':2
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neous system is

x c_e""p_, + c2e P2_ + c_e-_'"P3, +

A , I,c_e_'_'Pt. , + c2e_':'P2: + c3e-_'"P3. , + c_e-"_"P4,.J (21)

with pk = {p/_ r rpk:} , k = 1..... 4 and where c_ ..... c4 are arbitrary constants.

Application of the variation of parameters method with the terminal con-
ditions (Sb, c) leads to the general solution of the non-homogeneous system, with

two constants of integration yet undetermined.
If the two constants of integration are eliminated by solving for A in terms of

x and f, the general solutions for At and A., become:

At = _x. + _:x2 + _3e-'" + _qe -''_ (22a)

A2 = _:_xt + _:6x2 + _Te -_''' + _¢8e-_-_ (22b)

in which the _:,'s are functions of the eigenvalues and eigenvectors of,'_, and of

the disturbance f(t).

u*(t) = l brA [cf. (15b)] (23)
W3

The Solution Form

Using the fact that

the optimal control is found to be

u*(t) = rltxt + _7:x2 + r/3e -_'t*

where

f e"''f'(t)dt + rl_e-"_ I e_'f"(t)dt (24a)

-m k _
_, = ---_- (-_- /.t _p.2) (24b)

) /24c,"r/z = -- + /-_t + /.tz
O/

m(,)( c_3 .... _f + --_t + (24d)

m(1)( cr14 ..... _ + --_2 + (24e)
a N, /z2 m

(It should be noted that the feedback gains r/1 and _7: are those which would re-

sult from applying standard LQR theory to the homogeneous system equation

:_ = Ax + bu.) In equation (24) gt and p., are the eigenvalues of A with nega-

tive real parts, [see equations (18a, b)] and

Ldf,.(t) = k d + . (24f)
m m

For p,_ = #2 = _ [the critically damped case] equations (24a-e) reduce to

--_. '_'I_- =" " "
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By repeated application of the method of integration by parts, the control may

be re-expressed in terms of an infinite sum:

u*(t) = O_Xt + _Tzx,_+ 03 (- _(t) ( '(t)
/zl i ] + n, (25)

Rewriting f2 in terms of d and d, the control function becomes

u*(t)=otx(t)+o..J(t)+ [mk------(r/_--_+ _--24/]d(t)
/z./j

+ Z (-1) '-tc 03+ , + (_l),k r/3 + d_,,(t )
i=l m t(L2 m

This may be written in a more appealing form as

u*(t) = cpx(t) + c,,_(t) + c,od(t) + c_td(t) + higher order terms (27)

in which the constant coefficients cp, c_., cao, and ca_ may be defined from equa-

tions (24) and (26). Clearly, if the infinite sums converge rapidly enough, the op-

timal control can be approximated by

u*(t) = cpx(t) + c,,._(t) + c_od(t) + camel(t) (28)

For very low frequency disturbances the higher order terms in equation (26) are
negligibly small, and the control (28) closely approximates the optimal. If, in

fact, the second- and higher-order derivatives of d(t) are identically zero, the ap-

proximation is exact. It can be shown that for the critically damped closed loop

system the eigenvalues are real and equal, and that the convergence is more

rapid than for the overdamped system. Further, as the closed-loop system eigen-
values become more negative the convergence speed goes up as well.

Control Evaluation

Physical Realizability of the Control

The control (25) is physically realizable, if the states and sufficient derivatives
of d(t) are accessible (or estimable by an observer), and if the higher order terms

are negligible. It is not necessary that the eigenvalues be real, although the proof

of this requires a more general linear-algebra or state-transition-matrix approach.

If values are assigned to the system parameters, associated controller gains can

be evaluated. Suppose that m = 100 Ibm, k = 0.3 lbf/ft, c = 0 lbf-sec/ft, and

c_ = 10 Ibf/Amp. With w3 arbitrarily set at I and w_b varied, associated integer
values of wta can be found below which the eigenvalues g_ and _z., will always be

real. Such values are tabulated in Table 1. Stated otherwise, the tabulated values

of the weights wla and wlb are those integer values (for the sake of simplicity) for
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TABLE I. Optimal F/B and F/F Gains for Selected State Variable and Control Weightings

System Parameters: m = 100 Ibm, c = 0.000622 Ibf-sec/ft (_" = 0.1%), k = 0.3 Ibf/ft,

a = 10 Ibf/amp

Weights F/B Gains F/F Gains

Ula Wlb w 3 Cp C v Cdo Cdl Cd2 Cd3 Cd4

1 I 1.3845 1.3637 0.0294 -0.0006 -0.0070 -0.0067 -0.0049

2 1 3.1324 1.9863 0.0297 -0.0001 -0.0030 -0.0019 -0.0009

3 1 4.7659 2.44[3 0.0298 -0.0000 -0.0020 -0.0010 -0,0004

4 1 6.3732 2.8210 0.0299 0.0000 -0.0015 -0.0007 -0.0002

5 1 7.9701 3.1544 0,0299 0.0000 -0.0012 -0.0005 -0.0001

6 l 9.5617 3.4552 0.0299 0.0000 -0.0010 -0.0004 -0.0001

7 1 11.1950 3.7354 0.0299 0.0000 -0.0008 -0.0003 -4).0001

8 I 12.8153 3.9949 0.0299 0.0000 -0.0007 -0.0002 _m_O[

9 1 14.4269 4.2380 0.0299 0.0000 --0.0006 -0.0002 -0.0000

lO [ 16"0324 4.4674 0"0299 0"0000 -0"0006 --0.0002 -0.0000

15 1 24.0740 5.4729 0.0300 0.0001 -0.0004 -0,0001 -0.0000

20 1 32. 1259 6.3209 O, 0300 0.0001 -0.0003 -0.0001 -0.0000

25 1 40" 1819 7.0680 0'0300 0.0001 -0.0002 -0.0000 -0 . 0000

30 1 48.2297 7.743l 0"0300 0.0001 -0"0002 -0.0000 -0.0000

35 1 56" 2816 8' 3640 O"0300 O' 0001 -0. 0002 -0. 0000 -0. 0000

40 l 64.3361 8.9420 0"0300 0'0001 -0.0001 -0.0000 -0.0000
i

60 l 96.5360 10.9526 0.0300 0.0001 -0.0001 -0.0000 -0.0000 [
h

¢d5

-0. 0032

-0.0004

-0.0001

-0.0001

-0.0000

-0. 0000

-0. 0000

-0.0000

-0.0000

-0.0000

-0.0000

-0. 0000

-4). 0000

-0.0000

-0. 0000

-0. 0000

-0. 0000

which the closed loop system is closest to being critically damped without being

underdamped. Corresponding controller feedback and feed-forward gains (for
the first five derivatives) are also included.

The states x(t) and ._(t) and the derivatives d(°)(t), d(_)(t), and d_2)(t) are clearly

available for an Earth-based system. However, in space, the only absolute mea-
surements which can be directly available are £(t) and d(t), from which _(t), d(t)

and x(t), d(t) are obtainable only by successive integration(s). Rearrangement of

equation (28) into

u*(t) = (cp + Cdo)x(t) 4- (cv -b Cd|)_f(t) -- ¢do[X(t) -- d(t)] - ¢dl[f_(t) -- d(t)] (29)

or

U*(t) = (Cp + Cao)d(t) + (cv + ca,)_t(t) + cp[x(t) - d(t)] + c_[,_(t) - a_(t)] (30)

obviates the need for one accelerometer, but one accelerometer plus two inte-

grations remain necessary for either the platform or the experiment. Since

[x(t) - d(t)] (or one of its integrals) has not been weighted in the performance
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index J, experiment drift will be a problem that must be corrected either by an-

other control loop or by a change of system states. The latter could be accom-

plished by incorporating an accelerometer attached to the experiment into the

state equation. Alternatively, one could append an integrator to the plant, in-

clude the current i(t) as a third state, and optimize the control di/dt. But for the

sake of simplicity (i.e., fewer states) the former has been assumed (without devel-

opment) in this paper.

The higher order terms of the control [equations (25) and (26)] can be ne-

glected, for low frequencies, if the eigenvalues _1 and _z are of sufficient mod-

ulus. These eigenvalues, in turn, are under the control of the designer,

determined by his choice of weights wla, wlb, and w3. It is apparent from

equation (25) that u*(t) essentially reduces to two alternating power series. For a

sinusoidai disturbance of frequency o_ the series form of the control converges for
[_o/_, I < 1 (i = 1,2). It can be shown that each alternating power series con-

verges like EY=o(-1)'(w/_):'. With "low" frequency disturbances (i.e., small rela-

tive to system closed loop eigenvalues) a control formed by series truncation very

closely approximates the optimal.

For example, suppose that the normalized frequencies lo_/tt,{ for a sinusoidal

disturbance are less than 1/5, and that only the feedforward control terms caod(t)

and ca]d(t) are included with the feedback terms. Even so, the feedforward por-

tion of the truncated control, at any time t, will be a current that is still within

4% [i.e., (1/5)"] of the feedforward portion of the actual optimal. If the normal-

ized frequencies are below 1/10, this approximation error will be less than 1%.
Table 1 shows that the gains ca, of higher order derivatives d_"(t) [see equa-

tion (26) for algebraic representations] are, in fact, quite small.

In some circumstances there may be design constraints which prevent the de-

signer from selecting weights that will lead to sufficiently rapid convergence.

However, since convergence occurs rapidly even for eigenvalues of relatively

small modulus (]_o/_.,[ < 1/3), in a great many cases the designer will have much

latitude in his choice of weights. For "low" frequency disturbances, in these
cases, a control which includes only one or two feedforward terms will be "close"

to the optimal. These frequencies will be well-attenuated.

Higher frequency disturbances will also be well-attenuated, provided the

input-to-output transfer function(s) are proper in the Laplace Transform variable

s. This will not be the case for the present problem if more than three feedfor-

ward gains (Cao, ca_, ca2) are included in the control. Practically, this means that

only proportional and first-derivative feedforward [equation (25) with r = 0,1 or

equation (26) with n = 2] should be added to the feedback control terms. As will

be seen shortly, however, adding even the proportional feedforward term(s) can
dramatically improve the disturbance rejection over that afforded by LQR feed-
back alone.

Transfer Function and Block Diagram

Neglecting the higher order terms, the transfer function between input and

output accelerations or displacements is
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s2X(s) X(s) (c_ c,,o)
(c

(31)

and a block diagram of the controlled system can be drawn as in Fig. 4.

Control Stability, Stability Robustness, and General Robustness

Since the control feedback gains are the same as those obtained by solution of

the standard Linear Quadratic Regulator (LQR) problem, the closed loop system

is stable and enjoys the stability robustness characteristics guaranteed by the

(LQR) approach to optimality, viz., a minimum of 60° phase margin, infinite

positive gain margin, and 6 dB negative gain margin [12]. Additionally, numeri-

cal checks indicate that it enjoys substantial insensitivity, or general robustness

to uncertainties in k, c, and rn, as indicated by Table 2 and Figs. 5 through 12. By

comparing the Bode plots of Figs. 5, 7, 9, and 11 (corresponding to controls using

both LQR F/B and proportional F/F) with those of Figs. 6, 8, 10, and 12, respec-

tively (corresponding to controls using LQR F/B only), one can see that adding

feed-forward substantially improves disturbance rejection at low frequencies. For

example a comparison of Fig. 5 with Fig. 6 indicates that the optimal control
method described above can lead to acceleration reductions of greater than four

orders of magnitude for all frequencies. This reduction is more than two orders

of magnitude below that afforded by LQR feedback alone at the lower frequen-

cies, i.e., those most heavily weighted in the performance index.

The order of the reduction is eventually limited by control cost, of course,

probably in terms either of actuator-related limitations (such as heat-removal or

force-generation requirements) or of power limitations (especially in a space-

1

[

o(s) _ !

I
J

Plant

Controller r

I

FIG. 4. System Block Diagram.

I
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Concluding Remarks

This paper has applied an existing method for obtaining an optimal control to

the microgravity platform isolation problem, for which the disturbances to be

rejected are low-frequency accelerations. The system was assumed to be repre-
sentable in the form i = Ax + bu + f, with quadratic cost function J =

_f_ (xrWix + w3u2)dt and diagonal weighting matrix W_. The resultant control
law was found to be simple, stable, robust, and physically realizable. Further it

was shown to have excellent acceleration- and displacement-attenuation charac-

teristics, and to be frequency-weighted toward the low end of the acceleration

spectrum.
By making an appropriate choice of states, along with the use of frequency

weighting, the method can be extended to the case for which only relative posi-
tions and absolute accelerations are available. With this extension one can then

weight relative displacements in the performance index. [9] Additionally, since

absolute positions and velocities will then not appear as states, accelerometer

drift (which affects integrations) will no longer be problematic. Any one of a

number of noncontacting relative displacement sensors would be suitable for this

application (e.g., eddy current probes, photoelectric sensors, capacitance probes,

Hall-effect probes).

The approach as presented is algebraically intensive, but symbolic manipula-
tors can be used to ease the algebraic labors. Further, since the method produces

feedback gains identical to those obtained by the LQR approach to optimality,

numerical computation to those gains is easily accomplished, even for large sys-

tems. The feed-forward gains can be found numerically with comparable ease.
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7-- SUMMARY

H2 synthesis techniques are developed for a general multiple--input-multiple--output
(MIMO) system subject to both stochastic and deterministic disturbances. The tt2
synthesis is extended by incorporation of anticipated disturbance power-spectral--density
information into the controller-design process, as well as by frequency, weightings of
generalized coordinates and control inputs. The methodology is applied to a simple
single-input-multiple--output (SIMO) problem, analogous to the type of vibration
isolation problem anticipated in microgravity research experiments.

INTRODUCTION

The vibration environment onboard current and planned manned orbiters requires
isolation for microgravity science experiments. The disturbance frequencies are sufficiently
low, and the attenuation requirements sufficiently great, so as to preclude a solely passive
isolation system (ref. 1).

Since the disturbances to be attenuated are three---dimensional (ref 2, p.2), the
isolation actuator must be capable of acting over six degrees of freedom. The requisite
multiple--degree-of-freedom (MDOF) controller is much more difficult to design than a
single-degree-of-freedom (SDOF) controller, because the isolation system has many
inputs (actuator forces) and outputs (measured displacements and accelerations).

Multiple-input-multiple--output (MINIO) designs can be very susceptible to unmodeled
cross--coupling between channels of input or output (ref. 3), a problem not encountered in
SDOF design. The control forces used must therefore be properly coordinated if the
controller's performance is to be sufficiently insensitive to unmodeled dynamics (i.e.,
robust). The design of a robust MIMO control system requires the iterative use of
synthesis and analysis tools, the former for controller design and the latter for system

performance and stability evaluation (ref. 4).

A particular vibration isolation problem may involve different kinds of undesirable
outputs, such as excessive absolute accelerations and unacceptable relative displacements.
Some of these undesired outputs may be more important than others, and the degree of
undesirability may vary with direction or frequency. For example, rattlespace constraints
may be highly directional. Or a crystal-growth experiment may be particularly sensitive
to accelerations at certain frequencies (ref. 2, p. 7) or in certain directions. One of the

365

- PREG_EDING PAGE BLANK NOT FILMED



1

1

goals, then, must be to design a controller capable of minimizing selected plant outputs as
dictated by these considerations•

Plant outputs, however, cannot be minimized apart from consideration of the

associated control costs, because any active control both consumes power and releases heat.
Since both of these costs are of concern in a space environment, the control effort used
should not be excessive. And at higher frequencies control effort should also be minimized
in order to limit controller bandwidth for the sake of robustness concerns (ref. 5, p. 218).

This paper describes a design procedure, known as extended H_ synthesis (ref. 5, p.
267), for developing active isolation system controllers. A single-input-multiple-output
design problem is then addressed using the presented procedure.

BASIC PROBLEM AND SOLUTION

Problem Statement

We will use Linear Quadratic Gaussian (LQG) theory to design the MDOF
controller. This theory has been extensively studied and ussed. LQG is chosen as a
synthesis procedure since the quadratic performance index relates well to
root-mean-square statistics and power spectral density.

When linearized, the differential equations of motion of the plant can be

representable in state-space form by the first order system of equations
'v

"__X=Ax + Bu+ gdfd+ Es__s (la)

2=Cx+Du ( )lb
z_= + Mn (lc)

where x is the state vector, y. is the output vector, z_ is the measurement vector, uis the
control vector, _fd is a known or measurable disturbance vector, and _W.sand _.nare process-

and sensor noise respectively. We begin by making a series of reasonable mathematical
assumptions. Assume that not all states are accessible, so that rank C < dim x. Let the
initial conditions on the state vector be x (0) = x0; let x0, w_s, n, and fd be independent and
bounded; let x0 be Gaussian (ref. 6, p. 272); and let n and _ be zero-mean white
Gaussian, with = v_a(t-r) and cov[n(t), n(r)] = Vaf(t-r)(ref. 6, p. 272).

Assume that {A,B},,and. {A,Es Vll/2} are stablhzable,"" - -where V1 = Vii/2 Vii/2. (the
asterisk here means conjugate transpose"); and that {C,A} is detectable (ref. 5, p. 226).
Let V_ and Va be positive semidefinite (PSD) and positive definite (PD), respectively.

We choose a performance index of the form

J= gll im 1 _( I\'V1W2J{__,)dt}LT_o ° T J [x' WaJ
(2)

where \V1 is PSD and W3 is PD (ref. 6; pp. 272, 276). "g" is the expected-value operator,
needed since the system is excited stochastically by Ws. The cost rate flmctional form



1

(with "1 i m ,_") is used to allow both for the white noise disturbance Ws and for the

T--+ _c

non--dwindling disturbance fd.

If Z(t) is defined by _Z(t)= (z(r), 0 _<r < t}; and if 12(t) -- __[t.Z(t),fd] defines the set
of admissible controls (ref. 6, p. 272), where _ is a vector operator that is linear in terms of
its arguments; the basic problem objective is to find an admissible control function li*(t)
which minimizes J with respect to the set of admissible control functions u_(t). [The

asterisk here indicates optimality, in the sense defined by Eqn. (2).]

Problem Decomposition

The basic problem, as stated in Eqns. (1) and (2), can be decomposed into two

parallel subproblems, one stochastic and the other deterministic. Suppose that x = Xs +
Xd, where Xs is the portion of the system response due to disturbance W__s,and where Xd is
the portion of the response due to [d. Let Vs, Zd, Zs, Zd, Zs, Z,d, Us, and lid be

correspondingly defined.

= m _' [X's + x'd] {u_ + Xd
T-+_o 0 LW,_ WaJ - + _-d} dt

(3a)

can be reduced to J = Js + Jd, where

dt (3b)

T-+oo 0 ([x'd + u'd] {Xdd}) dt (3c)\va] -

The problem is now separable into a stochastic- and a deterministic subproblem, each of
which has an analytical solution. The two subproblems are stated, and their solutions

presented (without development) below.

Statement:

Given:

Stochastic Subproblem and Solution

.'_Xs= Axs+Bt2s+ Esws

Zs=Cxs+Dt2s (rank C <_dim xs)

Zs = Zs + ME

{A,B} is stabilizable, {C,A} is detectable
Xs(0) = Xso is Gaussian with zero mean

(4a)

(4b)

(,tc)
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Xso,Ws,and n are independent and bounded

such that cov[ws(t), Ws(r)] = Via(t-r)

and cov[n(t), n(r)] = Vaa(t-r)

where Vt is PSD and V3 is PD

{• r,,,,v21}Js = lira+ $_ ([_] {x:}}dt

T oo o Lw;xvJ -
where Wi is PSD and Wa is PD

Zs(t) = {ks(r), 0 _. r_< t}, Us(t) = _s[t,Zs(t)]

defines the set of admissible controls

(4d)

(4e)

(4f)

(4g)

Find: An admissible control function Us*(t) which minimizes Js with respect

to the admissible control functions tAs(t )

Solution (See ref. 6, pp. 272-277; and ref. 7, ch. 11):

u * -K ~_s (t)= xs(t)
t_

where Xs is an estimate of Xs using

288-289) having observer gain matrix L

K = W31 (B'P + W2')

a Luenberger observer

(5a)

(ref. 7, pp.

(5b)

P is the unique PD solution to

PA+A'P-(PB+W2) Wal(pB+W2)'+WI=0 (5c)

L = QC' (M V3 M') -1 (5d)

Q is the unique PD solution to

Aq + QA'-qc' (M VaM')-IcQ + Es Vi E s = 0 (5e)

P exists if {A,B} is stabilizable and {C,A} is detectable
or if the system is asymptotically stable

q exists if {A, Es Vii/2} is stabilizable and {C,A} is detectable
or if the system is asymptotically stable

Statement:

Given:

Deterministic Subproblem and Solution

Xd = A Xd q- BUd + Ed _fd

Yd = C Xd + DUd (rank C _<dim Xd)

Zd -- V.yd

{A,B} is stabilizable, {C,A} is detectable
Xd(0) = Xd0

(6a)

(6b)

(6c)
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Xdoand _fd are independent and bounded

Iwl'V2]
Jd = li m _ I T <[x_t u_t {Xdd}) at

T_oo 0 LW;waJ -
where Wi is PSD and Wa is PD

Zd = {Zd(r), 0 _< r < t}, ud(t) = _d[t, Z_d(t). fd]

defines the set of admissible controls

(6d)

(6e)

Find: An admissible control function Ud*(t) which minimizes Jd with respect to the

set of admissible control functions ud(t)

Solution (refs. 8; 9; and 10, pp. 156-157)"

lad* (t) = --t'_ X d -- W31 B' It exp[-.,X'(t-r)] PEd _fd('T) dr"

where K =W31 (B'P+ W;)

P is the unique PD solution to

--1

PA+A'P-(PB+\V2) W3 (PB+W2)'+Wi=0

(7a)

(7b)

(7c)

P e.,dsts if {A,B} is stabilizable and {C,A} is detectable
or if the system is asymptotically stable

Combined Solution to Basic Problem

When rank C < dim Xd, an estimate _d of Xd must be used in the feedback. If one uses

an asymptotic (i.e., Luenberger) observer, with gains L chosen to give an optimal solution
to the stochastic subproblem, he can then combine the stochastic and deterministic

subproblem solutions so as to use the same observer and regulator. This allows the optimal
solution (feedback portion) to be realized physically. If such a choice is made,

u*(t) = ud(t ) +ud(t ) =-K __(t)-W31 B'/_ exp[-N'(t-r)] PEd fd(r)dr (8a)-- -- t --

where _ is an estimate of x using a Luenberger observer

having observer gain matrix L

K = W31 (B'P + W2') (85)

L = QC'(M V3 M') -1 (8c)

P,Q, and X are as defined previously

If fs and n are correlated by _' [_fs(t), n_(r)] = V2_(t-r), then the above solution has the

modification (ref. 7, pp. 414--417) that

L = (QC' + Es V2)(M VaM') -1 (8d)

where Q is the unique PD solution to

_Q + QA'-QC'(M VaM')-IcQ + EsYtE's = 0 (8e)

369



for _ = A - EsV__V31C (8f)

and _1 = V1 - V2 V31 V2' (Sg)

PROBLEM EXTENSIONS

Frequcney Wcighting

Suppose now that it is desired to frequency weight the states x and the control u in

the cost rate functional, so that the weightings vary with frequency (ref. 11). Let x be

considered to be the input to a filter _(s) of which ix is the output, and let 7ft(s) have a

state-space representation defined by {AbBt,C_,Dl} [i.e., 7Yl(s) = CI(sI-A1)-IBI+ D1].

Then

z_t = :\_ z_l + BI x (9a)

Ix = Cl zl + DI x (gb)

expresses ix in terms of x, employing pseudostates z_. Similarly, if u is considered to be the

input to a filter _3(s) of which lu is the output, and if _3(s) has a state-space

representation defined by {:\:,B.2,C__,D.__}, lu can be expressed in terms of u, employing

pseudostates z<

z_ = A2 z._ + B2 u (10a)

lu = Co Zo + D2 E2 (10b)

Suppose now that these frequency-weighted states (tx) and controls (_u) are further

weighted by constant weighting matrices \¥_ and W._, respectively. The resulting state
equations and performance index are as follows:

where

= IA ,_" q- IB 11 + 1Ed_fd + 1Es Ws (Ila)

_.2= _C__+ D_u (lib)

z=y+ Mn_ (11e)

,J= g'I1 i m ,_ ,_<[_' u'] {_-}/dt (lld)
LT-, L w; lW31 -

2

_A = 1 A,
O

(11e)

(11f)
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,c = [c o o]

Dt'\VtDI

lWI = CI'\VIDt

O

1,V_ = [ 0
C2' \VaD_

tW 3 = [D._\VaD2]

DI'\VICt ]

Ct'WtCa

O C_'W3C2

(llg)

(llh)

(11i)

(11j)

(Ilk)

(i I)

(IIm)

Disturbance Accommodation

Suppose further that the stochastic disturbance is not Ws but fs, where fs is a

stochastically modeled disturbance with power spectral density

Sf(w) = Sf 1/2 (jco)Sf I/2 (jco). Defining tlf(ja,,) by Sfl/2(jw) Vt I/2, one can consider f_s to be

the output of a filter Hf(s) excited by zero-mean white Gaussian noise Ws (ref. 12) with

power VI (i.e., cov[ws(t), Es(r)] = V1 a(t-r).

In state-space form,

= As ._ + Ws (12a)

_fs= Cs(sl- As)-I (12b)

such that Hf(s) = Cs(s[ -- As) -1 (12C)

Incorporating these new pseudostates (_¢) into the state equations and performance index
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!

F

F

yields

2j=

,t

x = 2A x + 2B u + 2Ed _fdq- 2Es Ws

y=2Cx+Du

z=y+bI E

_I I'w'"¥21_g lira+/ [x'u'] {__})
T-_ Lr_v__WaJ

(13a)

(lab)

(13c)

13d)

where

2A= [iooE cs1tArO

O A_

O O AsJ

2B=

_c = [c o o o]

I

D_WIDt

2Wx= C_W1DI

0

0

DlWtCt 0 O

ClW_Cl 0 O

O C,_W3C20

O O 0

(13e)

(laf)

(lag)

(13h)

(13j)

(lak)
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O

2W2 = O

C2'W3D2

O

2W3 = [D2'W3D2]

The solution to this problem has been given previously.

(13m)

(13n)

SYNTIIESIS MODEL

The model given at the close of the previous section is the model from which the
controller is synthesized. The synthesis involves the determination of observer gains L and

regulator feedback gains K. P'review gains KFF can also be determined, if desired, to

approximate the Duhamel integral term of the optimal control. One approach to
determining these preview gains has been presented in reference 9. Further study of the
determination and use of these gains is needed.

ANALYSIS MODEL

Once the controller has been selected, it must be connected to the actual plant and
the resulting "analysis model" used to evaluate closed-loop--system performance and

stability. For constant gain matrices K, L, and KFF the open loop transfer function from

'r to U [=-K is-- _FB

where the form

indicates C(sI - A) -1

F__sto X, are

B + D. The closed loop transfer functions, respectively, from _Fd and

_xLFd(S) = C

and _LFs(S)_ _ =

- BK Ed +BKFF 1

2A-2BK-L2C t_B_FFjO

-BK
i

2A--2BK-L2C

0

Es+BKFF 1

2B_FF t

(1,1b)

(14c)
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O, are

The return ratio matrices (ref. 4) at the Y(s) and U(s) nodes, respectively, for D -

L,(s) =

-ek_-B K-I2C 0 L ]

J-B K A O

O -C O

(15a)

Ll(S) =
2A-2BK-L2Co ALC l OOB

K o IoJ
(15b)

The corresponding return difference matrices and inverse return difference matrices (ref. 4)
are as follows:

I + L.__(s) =

-2A-2BK-L2C O L

-BK A O

O -C I

(15c)

I + Ll(s) = A B (15d)

- o IiJ

I + L_l(s)= I + [K(sI- 2A + 2B K + L2C)-ILI-I[C(sI- A)-IB] -1 (15e)

[ + LII(s) = I + [C(sI- A)-IB]-I[K(sI-2A + 2B K + L2C)-IL] -1 (15f)

The singular values of these matrices can be used to evaluate system noise and disturbance
attenuation, stability margins, and sensitivity (ref. 4). Iterative application of the
synthesis- and analysis models can be used to produce the desired controller.

EXAMPLE PROBLEM

Suppose one wishes to develop a controller to isolate a space experiment of mass m

and position x(t), from a unidirectional acceleration disturbance _t(t). Assume that a wall
having position d(t) acts on m through an umbilical with stiffness k and damping e. (See
figure 1). Suppose further that rattlespace constraints require the transmissibility to be

unity below 10 -3 tlz, and that it is desired to attenuate the disturbance by at least two

orders of magnitude between 0.05 and 10 Hz. Let a linear actuator, applying a force that
varies with control current i, be connected between the wall and the experiment in parallel
with the umbilical.

For this problem, it is desirable at low frequencies to penalize the relative
displacement of the experiment heavily, so that the experiment "tracks" the wall. At
intermediate frequencies, however, the absolute acceleration of the experiment should be
heavily penalized to accomplish the desired disturbance rejection. The state space model,
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then, should have relative position x--d and absolute acceleration _ as states, allowing them

to be frequency-weighted in the performance index.

The system equation of motion is

k( (x--a) " "=- x---d)-c -:d, wherek=t-n,k C=m,C and_=_- (16a)

[n state-space form, tile equations can be written as

f i}I! °1txtf° }_ = -c 0 + x2 -_ i

x hk--a,'hC--_"hJ LXaJ--a,'h

_, ky2j Ln_J

(16b)

(16c)

16d)

where xt(t) = x(t)-d(t)

x2(t) = ._(t)-a(t)
Wh s2X(s), _,'h high,Xa(s)= (s--+--_h)

so that xa(t)_ _(t) for ._<<.,'h

[6e)

Frequency-weighting the states so that

fix,s,1[i 00  x,s,1 17 ,
t'Xa(s)J 1 (s+wli(s+w2) tXa(s)J

where oal < _,_) results in a performance index that penalizes xx more highly at low
requencies and x3 more highly at intermediate frequencies. If the control is

frequency-weighted so that

1U(s ) = ( 0248 ] U(s)[w4<O.'h] (17b)

at higher frequencies the control will be more heavily penalized. This is desirable both for

the sake of robustness and since x3 approximates ,_ only at frequencies sufficiently below

wh. Finally, let the input acceleration be considered to come from zero-mean Gaussian

white noise filtered through w f
8q-Wf"

-- 375



The resultant state equationsareas indicated on page8, where

al [i o o-(aa+a.,_,) -_o, __

1 0

(18a)

(18b)

Cl [i3°o (18c)

DI [i°1
0

(lSd)

A2 = -..'4
B2=l
C2 = -a. '2

4

D2 = w4
As = -c.'f
Bs=l
Cs = Wf

Ds=0

Assume that

and

cov [ws(t), w,.(T)]= 1 _c_- • )
co,' [nl{t), n,(r)] = 0.001 _(r- r)
coy tn2(t), n2(r)] = 0.00l s(t- -r).

Since AI has a zero [lst] column, 2A will have a corresponding zero [4th] column. To make
the frequency-_eighted system {_C,2A} observable, obtain j (x-d) dt as a measured state
(i.e., the first pseudostate, Zll) and modify 2C accordingly. Let the measurement noise
associated with Zli be n3, such that

cov [na(t), n3(7")] -- O.O00l

Gain matrix WI can be varied to "tune" the optimal control to give the most

satisfactory results. The transmissiblitv between d(t) and [(t) is given in figure 2. The
control uses feedback (and observeri gains obtained from system parameters and
weightings as indicated on the figure. Note that the low-frequency transmissibility is
unity, as desired, and that for intermediate frequencies the transmissibility rolls off with a

slope of -1.
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If a different frequency-weighting of x3 is used, it is to be anticipated that the
transmissibility curvewill changeaswell.

o) 2 S

X3(s) (19)For IX3(s) -- '( 8-I-aJ1 ) 2( S-t- ah 2 )2

the resultant selected transmissibility curve is given in figure 3. The low-frequency

transmissibility again, is unity; but now for the intermediate frequencies the
transmissibility rolls off with a slope of -2, as expected. Adding another pole at _'l and at

a_ to the Xa(s) frequency weighting would further improve the intermediate-frequency
roll-off. The present controller, however, meets the design specifications.

If state frequency-weightings of lXl(s) - w3 Xl(s) (20a)
S+_3

a_'2 s

and 'X3(s) = (s+wl_2(s+m2)2 X3(s) (20b)

are used, the results (figure 4) are similar to those given previously in figure 3. Note that
with this latter choice of frequency weighting however, (i.e., without any"rigid body poles"),

the frequency-weighted system {2C/A} is observable, without augmenting the actual plant
output v as was previously necessary. Consequently this is the preferred control.

DISCUSSION

H_ synthesis, as the example problem indicates, provides a highly versatile
loop-shaping tool. It is especially useful in controller development for SIMO and MIMO
systems, where classical loop-shaping methods are most lacking. Once the designer has
expressed the system equations in terms of states for which he has an intuitive feel, and of
measurable outputs, the design process becomes relatively easy. lie frequency weights (i.e.,
filters) the states and control inputs according to his engineering experience and intuition,
to indicate the relative importance of each as a function of frequency. Then he weights
these frequency-weighted states and controls relati.'e to each other. The ti2 synthesis
methodology automatically provides him with a set of regulator and observer gains that are
optimal with respect to the chosen weightings, given a quadratic performance index.
Known aspects of the input disturbances and sensor noise can be incorporated into the
design as well. Singular value checks provide the ability to evaluate system robustness.
With a few iterations, the skillful engineer can complete his design. Excellent computer
software packages already exist to assist in the task.

The frequency weighting tells the tt2 synthesis machinery how much "cost" to place
on a state or control input at any frequency, relative to its cost at other frequencies. If, for

example, absolute acceleration is undesirable only in a particular frequency range, that is
where it should be most heavily weighted. The subsequent weighting of the

frequency-weighted states and control inputs tell the synthesis machinery how much cost
to place on each frequency-weighted state or control relative to the others.
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postsubscript0
postsubscript1

postsubscript'2

postsubscript 3

postsubscript d
postsubscript f
postsubscript s
postsuperscript
postsuperscript
postsuperscript
postsuperscript
underline
ov'erbar -

1/2
I

-1

overhat

overtilde ~

presuperscript 1

presuperscript 2

Subscripts, Superscripts, and Diacritical Marks

Value at time t=0

With A,B,C,D.z: related to state-frequency weighting
state--space description

With L: return ratio matrix at control node

With V: process noise covariance
With w,W,_f_ state (or pseudostate) weightings, applied

subsequent to any frequency weighting

With A,B,C,D,z: related to state-frequency-weighting
state-space description

With L: return ratio matrix at output node.
\Vith V,W: cross-weightings
With \i: measurement noise covariance

With \V,_: control weightings
Related to deterministic disturbance
Related to filter for stochastic disturbance
Related to stochastic disturbance

Square root or spectral factorization

Transpose
Inverse

Optimum or conjugate transpose
Vector

With A: closed loop system dynamic matrix

With ._: augmented with frequency-weighting
pseudostates

Augmented with frequency-weighting-and
disturbance-accommodation pseudostates

Estimated or associated with cross--correlation

With x,X,tA, or _U: frequency-weighted
With other symbols: related to system augmented by

frequency weighting
Related to system augmented by frequency-weighting

and disturbance-accommodation
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1. ABSTRACT

It is well-known that the spacecraft environment deviates from a state of

zero gravity due to various random as well as repetitive sources. Science
experiments that require a microgravity environment must therefore be isolated
from these disturbances. Active control of noncontact magnetic actuators enables
such isolation. A one-degree-of-freedom test rig has been constructed to
demonstrate the isolation capability achievable using magnetic actuators. A
cylindrical mass on noncontacting electromagnetic supports simulates a
microgravity experiment on board an orbiter. Disturbances generated by an
electrodynamic shaker are transmitted to the mass via air dashpots representing
umbilicals. A compact Lorentz actuator has been designed to provide attenuation of
this disturbance.

X r2. I. TRODUCTION

Space exploration was initiated for the investigation of space itself, ranging
from the planetary system to the limits of the universe. Resulting benefits of this
effort include satellite communications and earth observation and imaging systems.
The scope of space exploration widened in the early eighties with the development

of the space shuttle - a system capable of transporting a large cargo to a low earth
orbit, and recovering the payload or frequently servicing it in space. A parallel
development was the gradual change in the role of man in space, starting with the
primarily technical function of a pilot and evolving into a more active involvement
encompassing interactive work and scientific experimentation in space.
Space--based laboratories like the Skylab and the Spacelab were flown to utilize the
"vanishingly low" gravitational forces available for extended periods of time. The
results, however, were mixed at best, and disappointing in certain cases. This can
be explained in part by the fact that the environment aboard the spacecrafts
deviates considerably from the ideal of zero gravity due to disturbances produced by
machinery and people on board, thruster fire, and other factors.

The incentives for performing science experiments in space include the
investigation of phenomena that are influenced by gravity on earth, the
development of novel materials and the improvement of processes like crystal

This work was supported in part by' the NASA Lewis Research Center and the
Center for Innovative Technology of the Commonwealth of Virginia.
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growth [1]. In theory, a freely orbiting spacecraft offers a state of zero gravity to
objects inside it, since the gravitational force is balanced by the centrifugal force [2].
However, in practice, there are various residual forces that disturb the environment.

Attempts to estimate these residual forces have been made in the past few

years [a-10]. The orbital microgravity environment can be divided into three
classes, as detailed in Table l. Quasi_teady accelerations are generated by three
sources --gravity gradient, aerodynamic drag and rotational acceleration. Any

point of an orbiting structure that is at a distance from the structure's center of
mass experiences a gravitational field that is different from that at the spacecraft
center of mass. Aerodynamic drag due to the earth's atmosphere represents the
absolute lower limit of the achievable background microgravity level, if the effect of
light pressure is neglected. Finally, in order to keep the same vertical orientation on
the space station with respect to the earth, the station must maintain a constant
pitch rate about its center of mass. This creates a centripetal force that results in a
rotational acceleration.

Orbital thruster fire and the steady-state operation of machinery like fans

and pumps on board a spacecraft are among the sources of periodic accelerations,
which occur at known frequencies. Impulsive disturbances like crew push--off and
the start-up and shut,town of machinery create non-periodic accelerations. The

irregular, unpredictable nature of these accelerations complicates attempts at
isolation.

Theoretical acceleration requirements for various processes and experimental
conditions have been investigated [3.7.i 1]. The common feature of curves depicting
the frequency--dependent requirements is that, for a given process, the acceleration
threshold is lowest from steady-state to about (0.01 -- 0.1) Hz, depending upon the
type of experiment. The acceptable acceleration then increases linearly with

increasing frequency, up to (1 _ 10) Hz. Subsequently, it increases as the square of
the frequency. The acceleration tolerance also typically scales inversely with the
volume that characterizes the process. The slopes and breakpoints result from
fundamental aspects of a process, and the shape of the curve can be considered to be

characteristic of a family of experiments. The acceleration level thresholds range
from an extreme level ot" (lO-r - lO-S) go for some material science and fluid science
experiments, to only" 10 -a go for the majority of biology and biotechnology
experiments.

A comparison of the microgravity requirements with the actual environment
available on the spacecraft indicates the need for vibration isolation. Moreover, the

frequency range of interest spans several decades, thus requiring the use of multiple
strategies for isolation.

For the high frequency range, passive isolators can serve adequately. Since
these are relatively simple and cheap, they can be placed at each interface between a
disturbance source and the space station. It should be noted that the sensitivity of
various categories of experiments to high frequency" disturbances is also
comparatively" low.

In the quasi-static frequency range, the extremely low stiffness and large
motion required make attempts at isolation very difficult. Rattlespace constraints
prohibit the occurrence of such large relative motions between the payload and the
spacecraft. This imposes a fundamental limitation upon vibration isolation.
Consequently, efforts at minimizing the input disturbances, like reducing the surface
area presented to the atmosphere so as to reduce atmospheric drag and locating
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payloads as close to the spacecraft's center of mass as possible, are necessary.
Owens and Jones have also suggested the possibility of canceling such disturbances
by continuous thruster control of the whole spacecraft [11].

At intermediate frequencies -- approximately between 0.01 |[z and 1 Hz
no passive isolation scheme can be effective due to the displacements and isolation
levels required. Only active vibration isolation at the payload_pacecraft interface
allows the synthesis of the desired isolator properties and the adjustment of these
properties using a control loop.

The actuator used to implement an active control scheme in the
intermediate frequency range should ideally be noncontacting. The ideas of

acoustic, electrostatic and electromagnetic (Lorentz force) levitation have been
considered in the context of containerless processing of materials in a low gravity
environment [i:2-15]. The first two techniques are limited to small objects. Lorentz

forces are utilized by placing an electrically conductive sample within a suitably
designed coil excited by a radio frequency current. Currents induced in the sample
interact with the magnetic field of the coil to produce forces that tend to move the
sample away from regions of high magnetic flux density. These currents also tend
to heat the sample, which is often utilized to melt it. However, the inability to
control this heating effect independently of the coil current required for levitation is
a limitation of this technique. Some unwanted stirring of a melt by the induced
currents also occurs.

Noncontact magnetic actuators, utilizing electromagnets or permanent
magnets, appear to be the best solution for vibration isolation in the intermediate
frequency range [16]. These actuators produce relatively large forces and can be
applied to the isolation of a variety, of science experiments. An active magnetic
isolation system can be "tuned" by simply changing control law gains to
accommodate changes in the payload or the expected disturbance environment, or
to produce improved performance once in orbit. Such experiments need only be
enclosed in a container, and can have umbilicals connecting them to the spacecraft.

A Long Action Magnetic Actuator (LAMA) has been proposed for this
purpose [17]. This is a magnetic thrust bearing modified to accommodate longer
strokes than those found in typical industrial applications. The pole-faces are

inclined at an acute angle to the a_xis of motion, instead of being perpendicular to it.
Detailed studies of magnetic thrust bearing design and use have been made [18-20].

The LAMA would be suitable for those intermediate frequencies that require
motions not exceeding about a hundred miles. Since the forces called for are of the
order of a few pounds at most, such actuators can be quite compact, the size being
primarily determined by the stroke required.

A single--axis magnetic actuator similar to a magnetic thrust bearing has
been described in [21]. The authors compared various sensing options to close the
actuator control loop _ gap and current sensing, force sensing and flux sensing. In
their experiment, the authors achieved force linearization using flux feedback. Due
to shaker and accelerometer limitations, the lowest recorded frequency of their

measured data was 5 Hz. A subsequent paper described a similar isolation system
extended to six degrees-of-freedom, called the Fluids Experiment Apparatus
Magnetic Isolation System (FEAMIS) [:22].

An interesting dual-mode approach to vibration isolation of large payloads

over lon_ displacements has been discussed in [23]. It was intended to provide the
high pertormance active isolation of noncontact magnetic suspension technology
without the limitations on articulation imposed by the small air gaps used in such
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systems. In such a tandem system, a "coarse" motion actuator was controlledas a

followup actuator, always attempting to keep the gap displacement for the magnetic
actuator within itsdesign limits.The magnetic actuator functioned as a "fine'Y

motion actuator, ignoring the presence of the other,coarse actuator. The
performance requirements on the coarse actuator were not very stringent,since the

imperfections of itsmotions would be attenuated by the fineactuator.

The operation of microgravity science experiments is likely to require the use
of an umbilical. An example is a plastic tube formed into a helical shape and
carrying a coolant. Acceleration control to reject disturbances caused by the
compliance of the umbilical has been theoretically investigated [24]. The umbilical
was assumed to have stiffness, but not damping. The microgravity quality

deteriorated with increasing umbilical stiffness, as expected. Acceleration control
improved disturbance rejection greatly when compared to position--only control, but
there was a price to be paid in the form of a more complicated control system. An

active umbilical control strategy, in which the extension of the umbilical is
minimized by making one end track the other, was also analyzed. It was found to
be effective in principle and comparable in performance to the acceleration control
loop technique.

3. EXPERIMENTAL RIG

An experimental rig to demonstrate vibration isolation down to microgravity
levels in one degree--of-freedom has been constructed, and is shown in Figures 1 and
2. An innovative long stroke Lorentz actuator, described in detail in the next
section, will be used to implement the isolation scheme.

An electrodynamic shaker with a long, peak-to-peak stroke of 6.25 inches
represents the space platform. The shaker is mounted, via aluminum plates, on a
concrete block resting on the laboratory floor. The shaker can generate sinusoidal,
random or impulse waveforms at frequencies down to DC, thus simulating the
disturbances typically produced on a space station that require active isolation.

The umbilicals connecting a science experiment to the space platform are
expected to be flexible hoses and wires. These will be modeled by air dashpots with
adjustable stiffness and damping coefficients. This type of dashpot has been
evaluated at NASA Lewis in a Single--degree--of-freedom mass-spring--damper
system in a fixed-fixed mounting configuration [25]. The test indicated the
possibility of a nonlinear stiffness/damping mechanism in these air dashpots. The
vibration isolation rig has been designed so that different kinds of umbilicals may be
employed, including actual imses used for fluid transfer. This is important, since
very little work has been done to date on vibration isolation to microgravity levels
in the presence of an actual physical connection between the experiment and the
space platform.

The long stroke Lorentz actuator, in parallel to the umbilical(s), connects the
shaker armature to the mass representing a microgravity science experiment in
space. This mass is a solid steel cylinder weighing 75 pounds, which is a typical
weight for such an experiment. Tile cylinder is horizontally suspended in space by

the magnetic forces generated by a noncontact electromagnetic support system.
Similar to radial magnetic bearings, the support system consists of two eight-pole
structures, mounted on a concrete base, at the two ends of the cylindrical mass.
This concrete base is massive compared to the "experiment" mass, and rests on the
same laboratory floor as the separate concrete block on which the shaker is



mounted. Eddy current probessensethe radial position of the cylinder and
completethe feedbackloop supplyingcurrent to the electromagnets. When the
electromagneticsupport systemis turned off, the cylinder restson a pair of
touchdown pedestalsmadeof delrin.

The axial accelerationof the cylinder will besensedoff a sensoryplate
mountedat its freeend,usinga very low frequencyaccelerometerwith a maximum
resolution of 1 pg. Provisionhasbeenmadefor the useof other types of
accelerometers,and the sensingof other statesof the system, like position. The
accelerometersignal will be fedto a feedbackcontrol circuit that determines the
current required in the electromagneticactuator to isolatethe cylinder from the
disturbancesgeneratedby the shaker. A control strate_,zvfor such an isolation

T .... kJ_

system with multiple degrees--of-freedom is discussed in [26].

The background vibration levels on the concrete base on which the cylinder
is mounted have been measured over twenty-four-hour periods, in both the

horizontal and the vertical directions. These vibrations are of the order of milli-g's,
the quietest period occurring from late in the night to early in the morning.
Operating at this time will yield the highest degree of reproducibility in our results.
Figures 3 and 4 show the frequency, spectrum of the background acceleration in the
horizontal and vertical directions. The vertical vibration shows acceleration

components corresponding to natural frequencies of the mounting plate. The
horizontal vibration has significant content at 45 Hz. The authors believe this is a
floor mode.

4. THE LONG-STROKE LORENTZ ACTUATOR

i

A compact long---stroke Lorentz Actuator has been designed, built and tested
in the laboratory. An intermediate version of the design was presented at the
Workshop on Aerospace Applications of Magnetic Suspension Technology at NASA
Langley in September, 1990 [27]. The final design described here incorporates many
of the same features, but is much more linear with coil position. This was
accomplished through modification of the flux distribution.

A schematic of the typical Lorentz Actuator, along with the terminology
used, is shown in Figure 5. The current carrying coil moves in and out along the
core. A strong permanent magnet in the shell maintains a constant magnetic flux in
the cylindrical air gap across the pole faces, irrespective of the current in the coil
(within design limits). The Lorentz force generated, therefore, can be linearly

varied with coil current [28].

The requirements for the laboratory prototype were fixed at a total stroke of
two inches and enough force capability to isolate a mass of 75 lbs. connected by an
umbilical (air dashpot) to a source generating very low frequency' vibrations. Force
linearity with position and with current were also required, Moreover, in view of
the ultimate goal of deployment in space, such a device had to be compact and
lightweight. Low power consumption and low heat generation during operation
were also important.

A computer program was written to implement a simple design algorithm for
a Lorentz Actuator. The steps of this algorithm are presented in Figure 6.

Using a permanent magnet material with a very high maximum energy
product of 35 MGOe (mega-Gauss-Oersted) [291 resulted in a design that required
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a ring magnet of 3.20 in. outer diameter. The magnet manufacturer, however, could
make such a magnet in one piece only if its outer diameter were less than 2 in.;

making a ring magnet with a 3.20 in. outer diameter would have required the costly
assembly of multiple segments, with an escalation of costs.

The possibility of designing a Lorentz Actuator satisfying all the

requirements, with the outer diameter of the magnet being additionally constrained
to less than 2 in., was therefore explored. The significant parameter in this context
is the gap ratio, defined as the ratio of the shell-to-core air gap to the
pole-face-to-core air gap. Conventional designs use ratios of .5:1 or higher in order
to minimize leakage of magnetic flux from the shell to the core. Figures produced
by the design program suggested that the design requirements could be met, along
with the additional constraint, if the rule of thumb of using a gap ratio of 5:1 or
more were drastically violated. Apparently, flux leakage, which the computer
program did not take into account, would result in the failure of such a design. It
was then hypothesized that this would not necessarily be the case if the core of the
actuator were saturated during normal operation. The permeability of a saturated
ferromagnetic material approaches that of air, and so most of the leakage that
would have occurred, with such a low gap ratio (less than 2:1) and an unsaturated
core, would be prevented.

A good way of verifying this hypothesis, without actually building such an
actuator, is the use of finite element analysis. A commercially available magnetic
finite element analysis package, MAGGIE, with a nonlinear modeling capability,
was chosen. It also allowed us to take leakage and fringing into account, and
different materials and geometries could be "tested" with relative ease.

A number of designs incorporating various features, were analyzed using the
finite element analysis package. The finite element model was generated so as to
achieve as much accuracy as possible, within hardware limitations. The mesh
consists predominantly of quad elements. Infinite air elements, used earlier, were
found to cause severe restrictions on mesh fineness. A mesh with only about
lO0 elements could be used. An air thickness of an inch on three sides of the

a.,dsymmetric model was specified instead. This was determined to be as accurate

as having infinite air elements on all three sides for a model of this size, while a
relatively fine mesh with about 400 elements could be used without encountering
core memory limitations. Moreover, the finest mesh allowed by the configuration of
our 386-based personal computer was used for the analysis.

Position linearity was improved, relative to the intermediate design, by
increasing the length of the magnet, imparting a lip to it by reducing the shell outer
diameter, and reducing the core diameter. The gap ratio resulting from the last
change mentioned above is still only 1.47:1. - much smaller than a typically
specified value of 5:1. The use of such an unconventionally low gap ratio enabled
the design of a compact and lightweight actuator. Use of a large ratio would also
have required a large diameter magnet that could not be made in one piece, thus
increasing costs. The decrease in flux, and therefore force, caused by' the increase in
the length of the magnet was compensated, to some extent, by a reduction in the

inner diameter of the magnet and a doubling of the pole piece thickness. Figure 7
shows the design. The overall length of the actuator is 4 in., while the outer
diameter is only 1.95 in..
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The salient featuresof the final designof the compactLorentz Actuator are
describedbelow:

• Long Stroke-- The requirementof two inchesof total stroke is satisfied.

• Position Linearity -- Over the whole two inchesof stroke, the actuator exhibits a
high degreeof linearity. For a constant coil current, this meansthat the actuator
force is the sameirrespectiveof the axial position of the coil, within the stroke
bounds. Figures8 and 9 depict this relationship for positive and negativecoil
currents respectively. Note that flux leakagehasbeenreducedto almost zeroover
the shell-to-core gap to achievethis. The maximum flux density acrossthe
shell-to-core gap is only about 7%of the ma_'dmumfltLxdensity acrossthe
pole-face gap.

• Current Linearity -- This requiresthat the averageflux density in the effective
air gap remain constantwith variations in the coil current betweenthe upper and
the lower limits. This is indeed the case,resulting in forcevs. current linearity,
Figure 10.

• Force-- A maximum forceof 1.25lbs is producedby'this actuator, which is
sufficient for our needs. This peakforcerequiresa coil current of 2.5 A.

• Weight -- At 2.28 lb., this actuator is only a tenth of a poundheavier than the
previousdesign.

• Current Density"-- A valueof 1000A/sq. in. in continuoususeensurescool
operation. For peakloads,a fivefold increasein current density is possible.

• Materials -- The magnetis madeof neodymium iron boron, which hasa very
high maximum energydensity product of 35 .MGOe. Selection of such a material
helped make the design compact. The high permeability circuit material is a 48%
nickel-iron allov that saturates at 15 kG. The B-H curve for this material,

provided by the_manufacturer, was input to MAGGIE as a table of a large number
of points on the curve. This was necessary because a nonlinear material

characteristic was being modeled.

The design specifications of the Lorentz Actuator are detailed in Table 2.
This actuator was built and tested in our laboratory. Figure t 1 compares the
measured magnetic flux density in the radial direction along the shell-to-core and

pole-face-to--core gaps with the values predicted by finite element analysis, for no
current in the coil. The measured peak value is lower, but is spread over a wider
axial distance. There is good agreement, especially over most of the shell-to--core
gap, where near-zero values of flux density are crucial to achieve force versus
position linearity. The actual actuator force is plotted against position for a number
of values of coil current in Figure 12. The measured values of force are greater, in
each case, than the predicted values since most of the small amount of leakage flux
across the shell-to-<ore gap was neglected in calculating the predicted forces.
Moreover, since the coil does see slightly greater total flux as it. moves into the
actuator, because of the small amounts of leakage, the forces measured increase
somewhat with such motion, tIowever, for low values of current and for coil

positions that do not place it very near the closed end of the actuator, the actual
forces deviate by less than 10% from the predicted values.
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5. CONCLUSION

The rig designedto demonstratevibration isolation to microgravity levels in
one--dimensionhasbeenbuilt and assembled.Measurementsof the background
accelerationlevelshavealso beenmade,and the quietest period for operation has
beendetermined. A compact, long stroke Lorentz actuator hasalso beendesigned,
built, and tested. Its performancehasbeenshownto match that predicted by finite
elementanalysisvery well. Microgravity isolation experimentswill be conducted in
the very near future.
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Table 1: Typical Disturbance Environment on a Spacecraft

le-7 g

le-8 g

le-7 g

le-2 g

le-3 g

le-4 g

le-4 g

le-4 g

QUASI-_TEADY ACCELERATIONS

(0 to le-3) Hz Aerodynamic Drag

(0 to le-3) Hz Light Pressure

(0 to le-3) Hz Gravity Gradient

PERIODIC ACCELERATIONS

9 Hz

(5 to 20) Hz

17 Hz

Thruster Fire
(Orbital)

Crew Motion

Ku Band Antenna

N_Q_N-P ERIODIC ACCELERATIONS

1 Hz Thruster Fire
(Attitudinal)

1 Hz Crew Push-Off

Table 2. Design Specifications for the Lorentz Actuator

LORENTZ ACTUATOR : FINAL DESIGN

Total length
Magnet outer diameter
Magnet inner diameter
Magnet length
Shell outer diameter
Pole-piece thickness
Core diameter

• 3.87 in
• 1.95 in
• 1.25 in
• 2.77 in
• 1.68 in
• 0.80 in
• 0.75 in

Air gap
Shell-to-core gap
Gap ratio

• 0.17 in
• 0.25 in
• 1.47 : 1

Coil length
Coil wire diameter
Number of turns

Number of layers
Maximum coil current

• 4.00 in
• 26.67 mils
• 600 turns

- 4 layers
- 2.5 A

Air gap flux density
Max. force generated
Actuator wt. (no coil)

• 0.145 T
• 1.25 Ibf
• 2.28 Ibf
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Lorentz Actuator
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Fig. 5: Schematic of a Lorentz Actuator
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LORENTZ ACTUATOR : DESIGN EQUATIONS

1. Assume permanent magnet operating point for maximum
energy product : (-H1, B1).

2. Compute magnet flux, fm • B1 * Am.

3. Compute circuit flux, fc • H1 * Lm / R, where R is
the circuit reluctance.

4. Compare fm and fc.

5. Adjust operating point until fm - fc - f, the actual
operating point. (When saturated, f • saturation
flux in saturated segment of circuil.)

6. Calculate air gap flux density, Bg - f / Ag.

7. Compute force capability, F • i * I * Bg, where i is
the actuator current and I is the total length of
coil wire in the air gap.

8. Change actuator geometry or circuit / magnet
material until desired force level is achieved.

Fig. 6. A Simple Algorithm for Designing a Lorentz Actuator

Fig. 7: The Compact, Long-Stroke Lorentz Actuator
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Compact Lorentz Actuator - Force
Coil Currents Positive (as Shown)
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Compact Lorentz Actuator - Force
Coil Currents Negative (as Shown)
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Compact Lorentz Actuator - Force
Legend Indicates Coil Position
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Abstract--Active vibration isolation systems contemplated for microgravity space experiments may be
designed to reach given performance requirements in a variety of ways. An analogy to passive isolation
systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach
and may lead to poor designs. For example, it is shown that a focus on equivalent stiffness in isolation
system design leads to a controller that sacrifices robustness for performance. Control theory as applied
to vibration isolation is reviewed and passive analogies are discussed. The loop shaping trade-off is
introduced and used to design a single degree of freedom feedback controller. An algebraic control design
methodology is contrasted to loop shaping and critiqued. Multi-axis vibration isolation and the problems
of decoupled single loop control are introduced through a two degree of freedom example problem. It
is shown that center of mass uncertainty may result in instability when decoupled single loop control is
used. This results from the ill conditioned nature of the feedback control design. The use of the Linear
Quadratic Regulator synthesis procedure for vibration isolation controller design is discussed.

i. INTRODUCTION

Active vibration isolation for microgravity space

experiments has generated much interest lately. A

variety of disturbances on-board manned space

orbiters contaminates the desired microgravity en-

vironment. These accelerations cover a frequency

band from d.c. to 100 Hz. Low frequency (< 10 -3 Hz)

sources include drag, solar pressure oscillations, tidal

effects, and gravity gradient forces. At the higher

frequencies, manned activity, thruster firing, and

orbiter systems contribute most significantly. A com-

prehensive treatment of the orbiter accleration en-

vironment is presented in [1] from which Fig. 1, a

characterization of the environment, is taken.

The need for the active isolation of materials

processing and fluid science experiments in the fre-

quency range 0.01-10 Hz has been demonstrated by

Jones et al. [1-3]. Above this range passive isolation

systems could be used. Below 0.01 Hz the rattlespace

available for the experiment is not large enough to
accommodate the relative motion. Therefore, these

accelerations must be passed by the isolation system

to the experiment.

Active isolation systems for microgravity and

pointing applications have been designed and con-

structed by many investigators [3-5]. These systems

generally use conventional PID control of a non-

contacting actuator, either Lorentz or electromag-

netic, to achieve low frequency disturbance attentua-

tion. While an actual microgravity experiment may

require umbilicals for cooling and power (at this

point, it is not clear whether these functions can be

performed otherwise as described in [4]) the isolation

systems designed and tested so far preclude an umbil-

ical from consideration. These systems achieve their

performance by the very low stiffness made possible

by low gain feedback of the relative position of the

experiment to the mounting surface. Without an

umbilical this stiffness may be set by the designer at

will. However, when an umbilical is present, the

umbilical stiffness presents a lower bound on achiev-

able stiffness unless the feedback loop is used to

introduce a negative stiffness. In this paper, the issues

of control system design for the generic (i.e. with

umbilical) microgravity experiment will be con-

sidered.

Previous research in the area of active microgravity

vibration isolation has established the importance of

the umbilical in control system design. Jones et al. [6]

present a good preliminary examination of the single-

degree-of-freedom control issues for intrusive and

non-intrusive isolation systems. Grodsinsky[7]

examined the use of acceleration and velocity feed-

back. Many of the issues these researchers have

discussed are revisited here from a control theory

perspective. Analysis of the six-degree-of-freedom

problem in the literature has been restricted to one-

loop-at-a-time design. Generally the effects of cross

coupling between the various degrees of freedom

have been ignored. Owens and Jones [2] have investi-

gated the effect of cross coupling due to center of

mass displacement for a single loop based controller•

Their work examines this important problem for the

non-intrusive experiment platform case where rela-

tive position feedback is sufficient. The authors con-

cluded that satisfactory performance can be achieved

if the control loops are designed for the decoupled

degrees of freedom and not autonomously for each
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local position. It should be noted that high gains are

not required to achieve isolation for the umbilical-

free case. An example is presented in this paper which

shows that decoupled single loop design may not be

sufficient for the generic isolation problem.

Any microgravity isolation system design should

meet the following specifications for translational

axes:

(l) Unity transmissibility from d.c. to 0.001 Hz so

as to prevent the experiment from impacting its

enclosure's walls.

(2) At least 40dB attenuation above 0.1 Hz[3].

(3) Both stability and performance robustness

with respect to changes in umbilical/experiment prop-

erties, non-collocation or misalignment of sensors

and actuators, center of mass uncertainties, and

unmodeled cross coupling between the degrees of

freedom.

Robustness refers to the ability of the control

system to perform satisfactorily when the true plant

varies from the nominal plant. Performance require-

ments of the type (2) for rotational degrees of free-

dom have not yet been specified to the knowledge of

the authors.

In this paper we shall examine the control system

issues associated with active microgravity vibration

isolation. The purpose here is not to develop new

control theory but to apply existing concepts to the

problem. We hope that this paper will serve a tutorial

function for vibration engineers involved with the

microgravity problem. The thesis of this paper is that

control system design, not passive isolator design

familiar to vibration engineers, is the proper tool for

analysis and synthesis. First, the control theory re-

quired for the examination is reviewed in Section 2.

Section 3 reviews passive isolation and applies it as an

analogy to control system design. In Section 4 classi-

cal loop shaping is applied to the isolation problem

and a controller is designed. A discussion of the result

and a passive system analogy follow. An example

multi-degree-of-freedom system is explored in Section

5 and system robustness is examined. Section 6

concludes with an examination of the Linear

Quadratic Regulator for the isolation problem.

:Z,CONTROL THEORY PREIJMINARIESt

We examine here the prerequisite control theory

for the examination to follow. While the actual

isolation problem is multi-dimensional, a single-

degree-of-freedom example will be examined first.

The one-degree-of-freedom microgravity vibration

isolation problem, depicted in Fig. 2, consists of an

experiment of mass m connected by an umbilical and

an actuator to a wall of the experiment enclosure. The

umbilical is modeled here as a linear element with

stiffness k and damping c. The wall's motion (dis-

placement y) is transferred through the umbilical to

the experiment resulting in its motion (displacement

x). Direct disturbances may also act on the exper-

iment due to the experiment's processes (e.g. motors,

valves, shutters). While it may seem that there is no

need to distinguish between umbilical and direct

disturbances, they are indeed different. The distinc-

tion lies in the fact that the actuator influences

through the experimenrs motion the force transmit-

ted through the umbilical; direct disturbance forces,

however, are independent of actuator force. This

distinction carries through to both passive isolator

performance and control system design.

The equation of motion for the experiment is

mY+c.f+kx=c)'+ky+d+f (1)

where d is the direct disturbance force and f is the
actuator force. We assume here that the spacecraft

wall is of sufficient impedance so as to not be affected

EXPERZHENT ENCLOSURE

EXPERIff_NT

UHBILIC&L ACTUATOR

f The Nomenclature is given in the Appendix at the end of Fig. 2. The one-degree-of-freedom microgravity vibration

this paper, isolation problem.



Microgravityvibrationisolation

bytheactuatorforce.UnderLaplacetransformation
eqn(!) yields

F cs +k ]

[']+ ms 2+cs+k [D(s)+F(s) 1 (2a)

or

F cs +k q
= Lm S-+¥;-+k| e(s)

+ [D(s)+ F(s)]. (2b)
ms 2 + cs + k

This is illustrated in the block diagrams for the

isolation system [Fig. 3(a) and (b)]. Here, H(s) is the

feedback transfer function, T(s) is the feedforward

transfer function, and v_(s),v2(s ) are measurement

noises. The actuator force is therefore a linear func-

tion of the wall and the experiment motion. The

subscripts p and a throughout this paper refer to

whether the model used is in position or acceleration
form.

If the umbilical properties are known explicitly and

measurement noise is sufficiently small, then trans-

mitted disturbances can be rejected with only feedfor-

ward control. Note, however, that direct disturbances

can only be attenuated through feedback. As always,

the primary purpose of feedback here is to account

for uncertainties, either in the disturbance or in the

plant model.

The price paid for this property of feedback is the

requirement that the feedback be stabilizing over the

range of uncertainties in the nominalplant, the plant

model assumed for design. The nominal stability of

the closed loop system may be checked by a variety

of methods, the most popular for single-input-single-

output (SISO) systems being the Nyquist and Bode

- 6----I)

,3
IJ

Fig. 4. Unity feedback form of control system.
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plots. Implicit in these methods are measures of

system robustness. The Nyquist stability criterion can

be generalized to multi-input-multi-output (MIMO)

systems, however the robustness measures do not

carry over as straightforwardly.

Both Fig. 3(a) and (b) can be generically expressed

in the form of Fig. 4 where G(s) is the plant, P(s) is

umbilical's pre-compensation of the wall disturbance

and/5(s) is the equivalent disturbance to the system.

Figure 4 has been presented in unity feedback form

so as to introduce the concept of loop shaping and the

trade-offs inherent in control system design. Denote

the transfer functions between /3(s) and X(s), the

sensitivity function, as

X(s) I
S(s) - -=-- = (3)

D(s) 1 + GH

and between v2(s ) and x(s), the complementary sensi-

tivity function, as

(a)
1)

1

X(s) GH
C(s) =- _ =--. (4)

v2(s) 1 + GH

(b)

1)
!

Y ,1 t I

Fig. 3. Displacement (a) and acceleration (b) isolation system Olock diagrams.

!
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57(s)

?(s)

apply where

Note that S(s)+C(s)= 1. Therefore, a feedback

controller designed to attenuate external disturbances

at a particular frequency

IS(joJ0)l,_ 1.0 IGH(fioo) [ _ 1.0

cannot attenuate the measurement noise signal at that

frequency

IC(jco0)l_ 1.0.

Likewise, a controller designed to reject a certain

frequency measurement noise, IC(joJ0)l,_ 1.0, must

pass the external disturbance at this frequency,

JS(jtoo) I _ 1.0. Classical design of control systems

usually involves separating (if possible) the frequency

spectrum into regions where input disturbances

(measurement noise here) and output disturbances

(external disturbance here) predominate. The meth-

odology, known as loop shaping, consists of choosing

H(s) so that GH is large and therefore S(s) is small

at frequencies where output disturbances are domi-

nant, and choosing H(s) so that GH is small and

therefore C(s) is small at frequencies where input

disturbances are dominant. This would be a relatively

simple task if the designer only needed to be con-

cerned with the magnitude of GH. However, stability

of the feedback system requires that the argument of

GH at crossover, where }GH(joOo))=_l.O, be

> - 180 °. That is, the system must have some phase

margin. Since the phase of a transfer function is tied

to the derivative of its magnitude (in dB) with respect

to frequency, as was shown by Bode [8], the loop

shaping's results are fundamentally limited by the

difference in frequency between the input and output

disturbances. The designer may only change through

shaping H(s) the magnitude in dB of GH at so fast

a rate. Thus, the frequency bands where the magni-

tude of the sensitivity function and complimentary

sensitivity function may be small must be separated

in frequency by a crossover region of a certain width.

This width is dependent on G(s) as well as on how

small IC(s)l and IS(s)l must be.

The trade-off between rejection ofinput and output

disturbances through feedback is also inherent in

passive isolation systems. Suppose we are capable of

choosing the umbilical stiffness and damping of Fig. 2

so as to design a passive isolator. Note that the

transfer function relations

G(s) £(s) 1
--=l+G(s) D(s)/m I+G(s) (5)

cs + k_

From this, it is easy to see that direct disturbances act

as output disturbances while wall accelerations act as

input disturbances. The difference between designing

an isolation mount for base disturbances and for

direct disturbances is well known and understood by

vibration engineers. A soft mount is appropriate for

isolating against base disturbances while a stiff mount

is appropriate for direct disturbances excitation. The

loop shaping capability of springs and dampers is,

however, very restricted. Indeed, one cannot shape

the loop to yield an unstable system. An active

control system may have its loop shaped to an

arbitrary specification provided it is possible to meet

the specification without sacrificing system stability.

Here lies the chief advantage of designing an isolation

system from a control paradigm: the interaction of

the conflicting specifications, stability and robustness,

is clear throughout the loop shaping procedure. It

should be noted here that sensitivity and complimen-

tary sensitivity functions are extendable to MIMO

systems through the use of singular values.

Robustness in single-input-single-output con-

troller design is measured by gain and phase margins.

The gain margin is the range of gain that can be

introduced into the loop while maintaining stability.

Similarly, the phase margin is the amount of phase

that can be introduced into the loop while maintain-

ing stability. The practical importance of the margins

is that the gain and phase of the nominal plant is not

the same as that of actual plant. These margins may

be easily determined from Nyquist or Bode plots.

Loop shaping also implies that a compensator H(s)

should not be so large as to extend the crossover

frequency of the compensated system into the higher

frequency range where nominal models are very
inaccurate.

Robustness for MIMO systems can also be

specified in terms of the simultaneous gain and phase

variations that may be introduced into the loops

while preserving stability. However, this description

does not account for unmodeled coupling in the

dynamics. Uncertainty may be represented in terms

of an additive (in parallel) or multiplicative (in series)

transfer function matrix appended to the plant.

(While these are the most common there are other

representations.) Using either uncertainty represen-

tation it can be easily shown by the small gain

theorem that stability can be guaranteed if uncertain-

ties in the plant are required to be bounded by a norm

of the compensated plant. This is best represented in

terms of the frequency dependent singular values of

the plant and uncertainty transfer function matrices.

This measure, however, is conservative since it allows

cross coupling dynamics between channels that in

actuality could never occur. The structured singular

value methodology attempts to alleviate this conser-

vatism through structuring the uncertainty model.

Readers interested in a general trea,ment of MIMO

stability and robustness should consult Ref. [9].

3. PASSIVE ISOLATION: AN ANALOGY

We now examine the design of an active vibration

isolation system for microgravity space experiments

from an analogy to passive isolators. Indeed, the

primary reason for pursuing an active rather than a
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passive system is not the increased flexibility in loop
shaping but the limitations of passive systems in

attaining a stiffness low enough to meet the isolation

requirements. This is true even when no umbilical is

present.

For the generic system model of eqn (1) with the

nominal values m =220kg, k = 20N/m and

c = 6.63 N.s/m (5% of critical damping). The trans-

missibility curve between base and experiment accel-

eration, shown in Fig. 5, is given by

,g(s) 2_o_.s + _:.
= 2 (6)

Y(s) s: + 2_co, s + o_,

with

_, - x/_-/m = 0.3 rad/s = 0.048 Hz

= x/-_/4mk _. 0.05.

Also depicted in Fig. 5 are the transmissibility

specifications (1) and (2) discussed in Section I.

While the system satisfies the unity transmissiblity

criterion, note that the natural frequency is not low

enough to meet the 40 dB attenuation requirement.

The system is also deficient in the magnification of

disturbances at and near the resonance. Clearly any

modification to the umbilical's dynamics through

feedback should include increased damping through

a positive gain on experiment velocity. Feedback of

inertial experiment velocity permits the damping co-

efficient _ to be increased in the denominator of

eqn (6) without changing it in the numerator.

Thus, the resonance can be removed without affecting

the roll-off rate [since the zero of eqn (6) is not

changed].

If the umbilical were softer, say with k = 0.20 N/m,

both specifications (1) and (2) could be met by the

passive system. Unfortunately, a passive system

cannot lower the stiffness with its inherently positive

gains on position feedback. An active system, though,

permits insertion of a negative stiffness spring in

parallel with the umbilical. For example, for the

nominal plant with the controller transfer functions

of Fig. 3(a) equal to

Hp(s) = -(6.0s + 19.8)

T,(s) = -(6.08 + 19.8) (7)

the natural frequency of the system is moved an

order of magnitude lower. (Here, a negative damper
has also been introduced so as to maintain the

system's 5% critical damping for the purpose of

comparison. If less negative damping is introduced in

order to remove the resonance, even more negative

stiffness must be introduced to meet the 40 dB specifi-

cation.) Note that this vibration engineering ap-

proach, i.e. lowering the stiffness, requires the near

cancellation of the umbilical's stiffness with that

introduced via feedback. If the negative stiffness

exceeds that of the umbilical, the equivalent stiffness

of the system will be negative and the system will be

unstable. It is not surprising then that the introduc-

tion of negative stiffness via the controller has no

robustness whatsoever. The design using eqn (7) has

<0.1 ° phase margin. The root locus for the system,

shown in Fig. 6, clearly indicates this potential for

instability. A focus on equivalent stiffness in isolation

system design thus leads to control systems which

sacrifice robustness for performance. In addition, a

design which achieves isolation through lowering the

system stiffness cannot attenuate direct disturbances

over the same frequency band, as discussed in
Section 2.

From a vibration engineering viewpoint, an

alternative means of achieving rejection of disturb-

ances is to fasten the experiment rigidly to an inertial

structure. While there is no such structure in space,

it is possible to achieve this effect by a high positive

gain feedback on inertial experiment position. (The

inertial position must be obtained by integrating an

accelerometer reading twice. This does pose a prob-

lem since this procedure is marginally stable. How-

ever, this problem may be ameliorated through

replacing the integrators with a second order low pass

filter. The authors are aware of this method being

employed successfully on a six-degree-of-freedom

magnetic suspension isolation rig at NASA Lewis

Research Center.) This inertial position feedback acts

as a very stiff spring tying the experiment to inertial
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0.04 _]0 T

OO
In
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c 000 _
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Fig. 6. Root locus for equivalent stiffness design with
respect to umbilical ;tiffness error.
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space. A controller and resulting transfer functions in
this case are

H, (s) = 20OO T, (s) = 0

g(s) 6.63s + 20

_--_ -- 220s 2 + 6.63s + 2020

,_(s) 220s _
(8)

D(s)/m 220s 2 + 6.63s + 2020

While this controller meets the 40 dB specification, it

does not have unity transmissibllity below 0.001 Hz.

An experiment controlled in this fashion will collide

into the wall. The feedforward transfer function may

be adjusted to provide unit gain via

- 2000

Tp(s) = 159s + l'

This feedforward with the feedback term of eqn (8)

effectively acts to base disturbances as a high relative

stiffness up to 0.001 Hz changing to a large inertial

stiffness at higher frequencies. The resulting trans-

missibility ,_(S)/Y(s) is presented in Fig. 7. Note that

since the feedback loop introduces no damping, the

original resonance is still present although less

damped and at a higher frequency. This may be

corrected by adding inertial damping into the feed-

back loop. While this design method may be used to

meet the specifications with robustness it has three

faults: (1) it requires inertial experiment position,

inertial wall position, and inertial experiment velocity

measurements which are problematic to obtain, (2) it

requires very high gains in both feedforward and

feedback loops to obtain attenuation, and (3) an

extension of the method to multi-degree-of-freedom

systems would be difficult. It is also possible that

when a flexible wall is considered, rather than the

infinite impedance structure assumed, the system will
be unstable.

As another method of fastening the experiment to

inertial space, one may employ inertial damping via

feedback. By feeding back the inertial experiment

velocity with a high gain, it is' almost possible to

achieve both the 40 dB and unity transmissibility

specifications without resorting to feedforward. For

example, with

i0o

Hp(s) = IO00s Tp(s) = 0

10_I

10.Z

10-3

t0-4 J Jnmd _mP

10-4 i0-3 10-2 10-1 10 0 101 10 2

Frequency (Hz)

Fig. 7. Transmissibility _(s)t_(s) for inertial stiffness with
feedforward design.
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Fig. 8. Transmissibility Jt(s)tl_(s) for inertial damping
design.

the resultant transmissibility is shown in Fig. 8.

Unfortunately, the roll-off rate here is approx.

20 dB/decade and therefore it is impossible to achieve

both specifications simultaneously. This method has

the advantage over the inertial spring of being a great

deal simpler and requiring only one inertial measure-

ment (experiment velocity which requires only one

integration of accelerometer measurements).

Another passive analogy is the lowering of the

natural frequency of the umbilical by increasing the

experiment mass. An increased experiment mass

would attenuate direct disturbances as well as those

transmitted through the umbilical. In addition, at

frequencies below the natural frequency of the

umbilical, the isolation system would have unity

transmissibility. Of course, for space applications any

additional mass is very costly. To lower the natural

frequency by an order of magnitude would require

increasing the experiment mass by a factor of one

hundred. Clearly, it is not practical to accomplish

increased isolation through the addition of real mass.

However, it is possible to increase the effective mass

of the system through feedback. This will be exam-

ined in the next section, as this idea most properly

evolves out of loop shaping.

To summarize, the passive isolation analogy to

active control system design yields some insight but

falls short as a design tool on three counts: (1) it does

not have the flexibility to shape the response with its

simple analogical elements, stiffness, damping, and

mass, so as to achieve the performance requirements,

(2) it cannot be easily or effectively generalized to

multi-degree-of-freedom problems, and (3) it com-

pletely ignores the robustness problem inherent to

active control systems. We advocate, therefore, that

vibration engineers consider active isolation a con-

trols problem and address it from an automatic

controls perspective.

4, THE CONTROL SYSTEM APPROACH

A simple controller is now designed for the system

described by eqn (1) and the nominal values. The

authors refer the reader again to Fig. 5 where the

transmissibility curve between experiment and wall

accelerations (or positions) is presented along with

the design specifications (1) and (2). The goal is to

I I



Microgravityvibrationisolation 693

104

103

102

•-- 100

10-I

io-Z

10-_'

10-4
10-4 10 .3 10 -2 10- !

Frequency (Hz)

Fig. 9. Designs specifications and Hp(s).

1 d I iI_ll_ I I I/lllll 1 11111111 i i I Illlll

loo

0.08

design a feedback control Hp(s) that results in the

closed loop transfer function

X(s) Gp(s)P(s)
Ga(s) - -- = (9)

Y(s) I + ap(s)Hp(s)

satisfying both constraints; i.e.

ED0

IG,j(jw0)l = 1.0 _n < 0.001 Hz

W-D0

IG,_(jcoo)l <0.01 _ >0.1 Hz.

Here, Gp(s) and P(s) are as indicated in the block

diagram of the system [Fig. 3(a)]. Note that the

uncontrolled system Gp(s)P(s) already satisfies the

first of these constraints; therefore, Hp(s) should be

very small in the low frequency band so that the

closed loop system will continue to satisfy the unit

transmissibility specification. Consequently, this

specification yields a condition like

IGHp(j_o)l < 0.01 _ _o0

IHp(jo_0) I < 0.2 J_nn < 0.001 Hz.

At and above 0.1 Hz, the attenuation of the uncon-

trolled system is not sufficient. It is desirable to

increase the attenuation by approximately two orders

of magnitude. This may be accomplished by requiring

Hp(s) to be very large in this frequency range,

approximately

Ianp(jO_o)l > 100_
In_,(/_o)l > 2000 J2n > 0.1 Hz.

10z
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Fig. IO. Resultant transmissibi]ity for loop shaped design.
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Fig. I 1. Root locus of loop shaped design with respect to
umbilical stiffness error.

These two design specifications on Hp(s) are shown

in Fig. 9 along with a simple function satisfying these

conditions,

Hp(s) = 5000s 2. (10)

This controller design results in the closed loop

transmissibility between experiment and wall acceler-

ations which is plotted in Fig. 10. Note that both

specifications (1) and (2) are met. Inertial damping

should be added to this design to eliminate the

resonance. It is easily seen from a root locus plot that

this design is robust with respect to changes in

umbilical/experiment properties (Fig. 11) and

actuator finite bandwidth (Fig. 12). In practice, this

design would be improved by rolling offthe controller

gain. This limits the controller bandwidth so as to not

affect possible unmodeled lightly-damped high fre-

quency modes of the system (e.g. wall flexure). A

controller design would probably also include a weak

position integral feedback to provide a slow centering

force so that accelerometer bias and noise do not

result in wall collision.

The reader might object to the controller of eqn

(10) since it is improper (i.e. has more zeros than

poles). However, this controller is realizable. Note

that Hp(s) multiplies the position measurement to

yield the control force. Since the factor s 2 in the time

domain is equivalent to two differentations with

respect to time, eqn (10) prescribes constant gain
acceleration feedback. This, as discussed earlier, in-

creases the effective mass of the system. [Of course, if

i _ " " ¢ i

008

(n 0.04 Wb.O _ Raft Ill

Qe- O.IXl
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) I I I
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Fig. 12. Root locus of loop shaped design with respect to
actuator finite bandwidth, cob =actuator pole break fie-

quency.

AA 2._/I I --._



694 C.R. KNOSPE et al.

we modify eqn (10) to limit the controller band-

width, then the mass analogy only holds within the

band.]

While both transmitted and direct disturbances are

attenuated, the experiment acceleration level will be

approximately the same as the accelerometer
measurement noise level. This results from the trans-

missibility between experiment acceleration and

measurement noise being nearly one due to the high

gain feedback. This is a fundamental issue as dis-

cussed in Section 2; one must trade-off the rejection

of disturbances to the system and the rejection of

measurement noise. Since the disturbances may be up

to 1000 times larger than the measurement noise

(accelerometer resolution typically I/_g) the con-

troller is designed to reject disturbances. The per-

formance of the control system is thus directly a

function of the quality of the accelerometer.

Recently, an alternative approach to design of

active vibration isolation control systems for micro-

gravity experiments was presented in Ref. [10]. A

desired transmissibility ratio G_(s) is specified along

with the plant model Gp(s) and P(s). Equation (9) is

then solved via algebraic manipulation for the feed-

back controller Hp(s) that yields the desired trans-

missibility (feedback of relative position is also

allowed and may be used; if used, a second condition

must then be specified for solution). While this ap-

proach resembles loop shaping in that it attempts to

achieve a certain transmissibility, it is fundamentally

different in that it does not properly consider the

plant. The algebraic procedure in essence first elimin-

ates the plant and then replaces it with one which will

yield the desired transmissibility. As a control design

procedure, this methodology has serious flaws: (1) the

stability of the resulting system may be entirely

dependent on perfect knowledge of the plant, (2) the

procedure incorporates none of the known relation-

ships and fundamental trade-offs between stability

and attenuation; it implies that any specified trans-

missibility is achievable, and (3) for systems with

right half plane poles/zeros, the methodology may

attempt cancellation with right half plane zeros/poles.

For a simple controls problem, the algebraic manipu-

lation method may result in a good controller.

However, for more difficult problems, the method

is questionable. An extension of this methodology

to MIMO control would be plagued by many

problems.

To summarize, controller design for single-degree-

of-freedom vibration isolation problems is best per-

formed through the classical control framework of

loop shaping where the natural interplay between

performance, stability and robustness are evident.

For multiple degree of freedom isolation problems,

recent advances in controller design, such as the

extension of loop shaping principles via frequency

weighting and singular values [1 I] seems to be most

promising, in order to emphasize the question of

coordination in control of MIMO systems, we next

examine a multiple degree of freedom isolation

problem.

5, k MULTIPLE-DEGREE-OF-FREEDOM SYSTEM

A common misunderstanding among many engin-

eers unfamiliar with control system design is the

nature of the differences between SISO and MIMO

control problems. The relative ease with which the

uninitiated comprehend the elimination of one error

signal through negative error feedback yields the false

impression that the MIMO control problem is little

more than the feeding back of multiple error signals.

This impression, however, is not totally groundless.

Indeed, many MIMO controllers in use today were

designed by a single-loop-at-a-time procedure.

Design with this method can be quite difficult, time

consuming, and non-intuitive. Robustness is difficult

to check except by analyzing all the possible permu-

tations to the nominal plant. The fundamental

problem in MIMO design is the coordination of the

control in coupled channels when the plant is not well

known (poorly modeled or time varying).

Easily decoupled active vibration isolation control

problems may be deceptively simple. Unmodeled

cross-coupling due to inaccuracies in center of mass,

sensor, and/or umbilical locations can result in poor

performance and even instability. An example iso-

lation problem illustrates. Figure 13 shows a two-

degree-of-freedom isolation system composed of an

isolated platform (width 0.5 m and height 0.2 m,

depth unspecified), two accelerometers, two actua-

tors, an umbilical, and a translating base. The plat-

form may translate vertically or rotate about its

center of mass. The actuators and accelerometers are

positioned a distance of q =0.2m symmetrically

about the assumed center of mass location. An

umbilical of stiffness k (no damping) runs between

this location and the base. The platform has mass rn

and inertia I. The equations of motion for the

platform's translation x(t) and rotation O(t) are

mg +kAO +kx=ft +fz+d_

IO'+kA:O +kAx=(q +Aff'2-(q-A)f, +d2 (11)

TF

• Assumed Cenler Of Mass

C#nlSt Of IdaU

D Accelerometer

Fig. 13. Two-degree-of-freedom active isolation system.
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where d_ and d2 are the disturbances, and A is the

error in the assumed center of mass, The accelerom-

eter readings are

y_ = 5/- (q - A)O"

y_ = :_ + (q + A)O'. (12)

The nominal system (A = 0) can be decoupled in

terms of the degrees of freedom by the change in
variables

r=f, +A

M = q(f2 -ft )

zj = Q¢,+/¢2)/2

z2= qQ¢_-/¢j )/2 (I3)

which are nominally the translational force, the

moment, the translational acceleration, and the angu-

lar acceleration for the platform, respectively. The

nominal transfer functions for the system are then

S 2

ZI (s ) = [m$---jT-_ ]( F(s ) -t- DI (s ))

For translational motion, the natural frequency of

the platform is k,j/-_. The rotational motion of the

platform is free since the umbilical is attached to the

center of mass. To compensate the nominal system,

feedback can be designed for each mode of the system

separately, since the system is decoupled. Transla-

tional acceleration and velocity feedback are first

used to add effective mass and damping.

F(s)= -(a + ;)Zt(s ) . (14)

This lowers the natural frequency of translational

motion yielding the closed loop transfer function

Z,(s)= (m +a)s2 +cs +k D,(s).

Next, angular deflection feedback is used to constrain

low frequency rotational motion and some damping

is provided.

yielding

Z2(s)= Is: + ns + b D2(s)

The following values are used to illustrate this

example

Platform Control system

m = 400 kg a = 31600 kg

k = 50 N/m c = 1000 N - s/m

I= 10kg-m 2 b =0.015N-m

n=0.2N-m.s

where the control system values are in effective units.

This control design lowers the natural frequency of

translational motion from 0.056 to 0.006 Hz with

40°/, of critical damping. The controlled rotational

motion has a natural frequency of 0.006 Hz with 26%

of critical damping. This controller design would

yield very effective isolation on the nominal system.

The actual close loop transfer functions, however,

will be different from the nominal due to the error in

the center of mass, A. The transmissibility can be

derived from eqns (11)-(15) as follows

[ms 2 + k]X(s) + [kA]O (s) = F(s) + O l (s)

[Is 2 + kAZ]/9 (s) + [kA]X(s) = M(s) + AF(s) + Dz(s )

Z,(s) = [s:lX (s) + [asZlO (s)

ZAs ) = [s:lO (s)

F(s) = -[a + c/s]Z I(s)

M(s) = -[n/s + b/s2]Z2(s)

yielding

[!m + a )s' + cs + k] Z'(s) + [mA]Z'(s) =s:D,(s)

(as' + s + k )A]z,(s)+[Is: +ns +h]Z,(s)= D2(s).$5 S 2

The poles of this system are given by the roots of the

characteristic equation

[(m + a)s 2 + cs + kills 2 + ns + b]

- [m`sl[A(as' + cs + k)l = 0 (16)

For the nominal plant, ,5 = 0, the roots of eqn (16)

result in the prescribed natural frequencies and criti-

cal dampings. However. as the center of mass error

increases, the poles migrate and the system becomes

unstable. For an error as small as 6 ram, instability

occurs. A plot of the pole movement vs error in

center of mass is shown in Fig. 14. This sensitivity

results from the ill-conditioned character of the re-

quired controller. Ill-conditioned here means that the

controller's gain to an output signal varies strongly

with the signal's direction. This results in a control

system which is not robust to this model's uncertainty

(center of mass)[12]. A proper MIMO controller

design might remedy this problem. In any case, an

analysis of the problem from a MIMO control

¢a

t-
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14. Root locus of two-degree-of-freedom with respect
to center of mass error A.
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perspective would indicate the potential instability

and the nature of the trade-off between performance

and robustness. (The authors note that increasing the

damping and stiffness for the rotational mode

improves the system robustness significantly, while

changing the damping or effective mass for the

translational mode has little effect.)

6. LINEAR QUADRATIC REGULATOR FOR ISOLATION

MIMO control design, since it requires a high

degree of coordination, must proceed by a synthesis

procedure. One such method is Linear Quadratic

Regulator (LQR) synthesis [13]. This produces a state

feedback controller which is optimal with respect to

the quadratic (two norm) performance function

J=f?_'(joo)Q.f(jco)+uT(jco)Ru(jco)dto (17)

where Q and R are respectively the symmetric

(usually diagonal) state and control weighting

matrices, and .f(jco) and u(joo) are the Fourier

transforms of the state and control vectors. The state

(positions and velocities for vibration isolation) sa-

tisfies the differential equation

k = A£ + Bu.

The quadratic performance function of LQR, eqn

(17), is well suited to this problem since vibration

isolation quality is usually measured in terms of

root-mean-square. However, some modification of

the performance function is necessary to apply this

synthesis procedure to microgravity isolation con-

troller design. The reader will note that state feedback

for the isolation problem is feedback of experiment

positions, velocities, angles, and angular velocities.

Thus, LQR can only result in inertial stiffness and

inertial damping feedback. As was shown in Section

3, these isolation techniques cannot yield acceptable

isolation performance. Thus, an LQR performance

function of the form of eqn (17) will not yield a

satisfactory controller. Note that the differential

equation does not include a disturbance term. Conse-

quently, the controller is optimal with respect to

white noise. Since the power spectrum of the micro-

gravity environment is not of this shape, the LQR

controller will not be optimal with respect to rejection

of the disturbance. Through the incorporation of a

disturbance model (essentially a shaping filter) the

LQR problem may be modified to yield an optimal

disturbance accommodating (i.e. rejection) con-

troller. This incorporates the addition of pseudo-

states to the state variable model [14],

Closely related to disturbance accommodation is

the concept of frequency weighted LQR performance

functions [15]. Here, the Q and R matrices are chosen

to be even rational functions of frequency. This

results in the addition of pseudo-states to the state

variable model. Through choice of the weighting

functions, the designer can in essence shape the

control loops [11]. This also permits the weighting of

experiment acceleration. It should be noted that for

successful application of LQR theory to the micro-

gravity isolation problem frequency-shaped cost

functions must be used. Without this, the control

resulting from the synthesis procedure would attenu-

ate the vibration at frequencies below 0.001 Hz (non-

unity transmissibility). The reader should note that

the well known robustness characteristics of LQR

controllers do not apply to most frequency shaped

designs or to plants with unmodeled cross coupling.

7. CONCLUSIONS

Successful active isolation for microgravity exper-

iments can be achieved, but only if the problem is

analyzed from a controls perspective. A passive iso-

lation analogy, while useful for an understanding of

the control problem, is not an effective design tool.

Design of active vibration control systems can best be

carried out through loop shaping. For intrusive iso-

lation platforms, this results in a high gain accelera-

tion feedback design. A two-degree-of-freedom

example was used to illustrate the instability that can

result under unmodeled cross coupling when the

control system is designed via decoupling/single loop

design procedures. The source of this sensitivity was

ill-conditioning of the controller. The LQR was

examined for the isolation problem. For synthesis of

an effective controller, the procedure must be

modified to include loop shaping.

Acknowledgements--This work was supported in part by
NASA Lewis Research Center and the Commonwealth of

Virginia. Some of this research was performed at NASA
LRC as part of the Summer Facully Fellowship Program.
The authors would like to thank Dr Gerald Brown and

Carlos Grodsinsky of NASA LRC for many helpful discus-
sions.

REFERENCES

1. R. G. Owen and D. I. Jones, Microgravity Isolation
Mount: Columbus Application Stud), (WP.I.I). Euro-
pean Space Agency, Technical Note BTN-001 (1988).

2. A. R. Owens and D. I. Jones, Toward a practical
microgravity environment. Proceedings of the Third

European Space Mechanisms and Tribology Symposium,
Madrid, Spain, pp. 245-250 (1987).

3. D. 1. Jones, A. R. Owens, R. G. Owen and G. Roberts,
Microgravity Isolation Mount: Design Report. European
Space Agency, Technical Note BTN-009 (1989).

4. C. M. Grodsinsky and G. V. Brown, Non-intrusive
inertial vibration isolation technology for microgravity

space experiments. NASA TM-201386 (1990).
5. B. J. Hamilton, J. It. Andrus and D. R. Carter. Pointing

mounts with active vibration isolation for large pay-
loads, lOth Annual Guidance and Control Conference,
American Astronautical Society, Keystone. Colo. _1987).

6. D. I. Jones, A. R. Owens and R. G. Owen, A micro-
gravity isolation mount. Acta Astronautica 15, 441-448
(1987).

7. C. M. Grodsinsky, Development and approach to low-
frequency microgravity isolation systems. NASA Tech-
nical Paper 2987 (1990).



Microgravity vibration isolation

8. H. W. Bode, Network Analysis and Feedback Amplifier
Design. Van Nostrand, New York (1945).

9. J. M. Maciejowski, Muhit.ariable Feedback Design.
Addison-Wesley, New York (1989).

10. A. Sinha, C. K. Kao and C. M. Grodsinsky, A new

approach to active vibration isolation for microgravity
space experiments. NASA TM 102470 (1990).

11. M. G. Safanov, A. J. Laub and G. L. Hartmann, M,M(s)

Feedback properties of multivariable systems: the role n

and use of the return difference matrix. IEEE Trans. P(s)

Automatic Control 26, 47-65 (1981). Q

12. S. Skogestad, M. Morari and J. C. Doyle, Robust q

control of ill-conditioned plants: high purity distillation. R

IEEE Trans. Automatic Control 33, 1092-1105 (1988). S(s)

13. B. P. O. Anderson, and J. B. Moore, Linear Optimal T(s)

Control. Prentice-Hall, Englewood Cliffs, N.J. (1972). u

14. C. D. Johnson, Accommodation of external disturb- v(s)

ances in linear regulator and servomechanism problems, x,X(s)

IEEE Trans. Automatic Control 16, 635_:J44 (1971). ._
15. N. K. Gupta, Frequency-shaped cost functionals: y,Y(s)

extension of linear-quadratic+gaussian design methods, y
J. Guidance Control 3+ 529-535 (1980). z,Z(s)

A

O,e(s)

o) n
APPENDIX

Nomenclature

A = system dynamic matrix
a = acceleration feedback coefficient

B = system input matrix
b = rotational stiffness feedback coefficient

C(s) = complimentary sensitivity function

c = damping

697

d,D(s) = direct disturbance force

/_(s) = equivalent disturbance

f,F,F(s) = actuator force

G(s) = plant transfer function

H(s) = feedback transfer function
1 = moment of inertia

k = stiffness

= control moment

= rotational damping feedback

= umbilical precompensation transfer function

= state weighting matrix

= actuator placement

= control weighting matrix

= sensitivity function
= feedforward transfer function

= control vector

= measurement noise

= experiment position
= state vector

= wall position
= accelerometer measurements

= decoupled measurements
= center of mass error

= angular position

= natural frequency

= percent critical damping

Subscripts

a = acceleration

cl = closed loop

p = position.
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Abstract
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Manned orbiters will require active
vibration isolation for acceleration---sensitive

microgravity science experiments. This
paper investigates control aspects of the
isolation problem and proposes a viable,
robust control. Since umbilicals are highly
desirable for many experiments, and since
their presence greatly affects the vibration

isolation problem, they must be considered
in control synthesis. Experiment isolation

involves reducing undesirable plant outputs,
such as excessive accelerations and

unacceptable relative displacements. The
former are undesirable due to experiment
dynamic environmental demands; the latter,
due to rattlespace constraints. Ideally,
controller design should minimize these
outputs, while considering input- and
output directionality and frequency content.

This paper investigates applying modern
control theory to the isolation problem,

incorporating frequency-weighting and
disturbance accommodation techniques. The
resulting controller achieves excellent system
performance, for plants within a reasonable
range of variations from the nominal.

Robust stability and performance guarantees
were measured by singular value and
structured singular value checks, yielding
guarantees on allowable real plant parameter
uncertainties, and on acceptable controller

and sensor phase and gain variations. The
problem of unmodeled high frequency modes
was eliminated by using frequency weighting
to reduce controller bandwidth.

This design method has been developed

with the six---degree--of-freedomisolation

problem in mind, to which itisfully
applicable. In this paper the method is

applied successfullyto the single--degree-
of-freedom isolationproblem.

Introduction

The vibration environment onboard

current and planned manned orbiters will

require isolation for many microgravity
science experiment_ The disturbance
frequencies are sufficiently low, and the

attenuation requirements sufficiently great,
so as to preclude a solely passive isolation
systen_,_.

Since the disturbances to be attenu_.ted

are three--<Limensional (3-D)_ the isolation
actuator(s) must be capable of acting over
six degrees of freedom. Although
microgravity isolation systems have been
developed and tested(ll most controllers
offered to date fail to take into account the

effect of umbilicals in a 3--D isolation system
design@. Since umbilicals are highly

desirable for many experiments$)(e.g., for
evacuation, power transmission, cooling,
material transport), they must be considered
in a generally applicable control scheme.
Simple application of nonintrusive control

methodologies is insufficientOl

The requisite multiple---degree-
of-freedom (MDOF) controller is much
more difficult to design than a

Copyright (c) 1992 by the International Astronautical Federation. All rights reserved.
* Graduate Research Assistant, Mechanical, Aerospace, and Nuclear Engineering
**Assistant Professor, Mechanical, Aerospace, and Nuclear Engineering
t Mechanical Engineer, Microgravity Experiments Branch of the Space Experiments Div.



single-degree--of-freedom (SDOF)
controller, because the isolation system has
many inputs (actuator forces) and outputs

(measured displacements andaccderations).
Multiple--input-multiple--output (MIMO)
designs can be very susceptible to unmodeled
cross--coupling between channels of input or
output(3l a problem not encountered in
SDOF design. The control forces used must
therefore be properly coordinated if the

controller's performance is to be sufficiently
insensitive to unmodeled dynamics (i.e.,
robust). The design of a robust MIMO

control system is a nontrivial problem
requiting the iterative use of synthesis and
analysis tools, the former for controller

design and the latter for system stability-
and performance evaluationS)

H2 synthesis, the controls approach
chosen for this work, has been used

effectively in MIMO control problems_).
Additionally, the approach seems
appropriate for the present problem, since
the quadratic performance index relates well

to root-mean--square (rms) statistics and
power spectral densities, in which form

present orbiter acceleration data is currently
made available0_

The microgravity isolation problem
aboard manned orbiters involves reduction

of different kinds of undesirable plant
outputs, such as excessive accelerations and

unacceptable relative displacements. The
former outputs are undesirable due to the

demands of the experiments themselves0);
the latter, due to rattlespace constraint#, a).

Since some disturbances may be directional,
since some undesirable plant outputs may be
more important than others, and since the

degree of undesirability of these outputs may
also vary with direction or frequency, the
design of an optimal controller ideally should
incorporate these factors.

Plant outputs cannot be minimized
apart from consideration of the associated
control costs, because active control both

consumes power and releases heat. Since
both of these costs are of concern in a space
environment, the control effort used should
not be excessive. And at higher frequencies,
the control effort should be reduced in order

to limit controller bandwidth for the sake of
robustness concern#l

H_ synthesis, more commonly known as

LQG (Linear Quadratic Gaussian) or LQB.
(Linear Quadratic Regulator) synthesis,
allows the designer to develop an optimal
regulator that consists of full state feedback

using constant feedback gains. Inaccessible
states are reconstructed by an asymptotic
observer that uses constant observer gains.
In the LQR synthesis approach the observer
gains are chosen to produce a stable observer

with poles placed as desired by the
designei_0l In the LQG synthesis approach
the observer gains are selected to minimize
the rms error of the observed states from the

actual states, based on the assumption that
the process- and measurement noise vectors
are zero--mean white G aussian00)

H2 synthesis can be extended to allow

the controller (i.e., the regulator and
observer) gains to be optimized for colored
process noise( t0, 10. Another extension
permits the states and controls

independently to be "frequency-weighted",
so that certain frequencies of each are more

heavily penalized than others, in an rms
sense(t_, tt_ A third extension allows for the
inclusion of deterministic disturbance

information into the optimized control
expression 03, 14, 15.)

The application of basic H2 synthesis to
the tethered microgravity isolation problem
was first proposed in 1990_8); but the most
complete treatment to date, of the full
extended H2 synthesis approach, appeared a
year later0_l An algebraic introduction is

published in reference (18), and the full

deterministic solution is developed in (19).
The present paper presents the results of a
systematic application of the extended H_
synthesis method to a realistic 1-D isolation

problem. The resulting controlled system is
evaluated using singular values and

structured singular values ("# analysis") to
determine guarantees of system performance

with uncertainties in the umbilical, payload,
sensor, and actuator models. An excellent

introduction to much of the pertinent
analysis methodology is contained in
reference (20).

2



Problem Description

The general 3--D vibration isolation
problem i'or the tethered payload has three
translational and three rotational degrees of
freedom. In reference (20) Allan and-Knospe

presented a brief survey of several published
3-D syspension designs. The extended H2
synthesis- _ analysisapproach can be
readilyapplied to a 3-D problem once the

system model has been reduced to state---

space form (i.e.,consistingof a setof Ist

order linearordinary differentialequations).

However, the simpler I-D problem offersthe

benefit of providing a simple model that is

highly conducive to developing a physical

intuition. Further, the specific
mathematical model ismuch less

geometry---dependent. The mathematical

theory summarized below isgenerally
apphcable to eitherthe I-D or 3-D

problem; but for the reasons noted above, it

willbe apphed only to the 1-D problem in

the apphcation sectionof thispaper.

Let the payload (e.g., experiment) be
modeled as a lumped mass with inertial

position x(t). Assume that the orbiter (i.e.,
experiment rack) has inertial position d(t),
and that massless umbihcals characterized

by a stiffness and a damping connect the
payload and orbiter. Suppose further that a
Lorentz actuator applies a control force
proportional to the applied current u(t) with
proportionality constant a. Such a model is
shown in Figure 1. Typical parameter

Actuator
Will/l/Ill,///_//////,//_//////_

x(t)

Figure 1.--Physical representation of modeled
one-dimensional system

values were chosen: mass = 75 Ibm, stiffness

= 1.544 Ibf/ft,damping = 0.01138 Ibf---sec/ft

(( = 0.3%), and a = 2 Ibf/Amp. Clearly

thismodel isinaccurate,sincethe plant will

not be a perfectlyrigidmass and since the
umbilical is neither massless nor accurately

characterizableby a singlestiffness-and-

damping model. The differencesbetween

the actual system and the nominal system
willbe addressed later. It willbe seen that

the system (consistingof payload, umbilical,

sensor(s),controller,and actuator) isrobust

to anticipated uncertainties(i.e.,remains

stableand achieves good performance).

The goal is to find a feedback controller
such that the controlled system satisfies the

following specifications:

1. Above 0.1 Hz the payload acceleration

_(t) should be 40 dB below the orbiter

acceleration a(t).
2. Below 0.001 Hz the payload vibration

x(t) should track the orbiter vibration

d()t to within 10 percent, in order to
prevent collision of the payload with the
walls of the experiment rac_)

3. The payload should track perfectly the
DC motion of the orbiter, where no
relative motion can be tolerated.

4. The loop gain of the system (plant and
controller) should be less than 0.1 above
200 Hz, to avoid controller excitation of
orbiter-or payload flexible modes.

5. The system should remain stable and

exhibit good performance for anticipated
inaccuracies in the system model.

These specifications are derived from the
available information concerning existing
and required vibration environments,O)while

recognizing that rattlespace constraints will
require orbiter tracking at very low
frequencies_.

Figure 2 shows the open loop
transmissibihty of the plant (i.e., its
amplification factor, plotted as a function of
harmonic-input frequency), along with

specifications (1) and (2).

-  mmmmmm
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Basic Solution

The equation of motion can be expressed
in the state-space form

__ = Ax_ + B u + Es__s,

X = C_x + Du + Mn_.s
where __s and n_s are white noise vectors

reflecting the power spectral densities of a
and of the sensor noise, and where the vector

x includes states derived from the equation
of motion (e.g., inertial or relative positions
or velocities, or accelerations), along with
disturbance-accommodation pseudostates

and frequency weighting pseudostates if
desire6Z_

As outlined in reference (17), once the
problem is expressed in the above state
space form with a suitably chosen quadratic
performance index, an optimal controller can
be found readily by the solution of an

alsebraic Riccati equation. The solution and
solution methods are well-known. The

resulting controller uses a control current
that employs full state feedback, where
inaccessible states (or pseudostates) may be
reconstructed using an asymptotic observer.
If the type of asymptotic observer used is a
Kalman-Bucy filter, the observer design also
involves the straightforward solution of
another algebraic Pdccati equation(tz). Thus,
a controller can be synthesized in a
straightforward manner. Considerable

insight is necessary, however, in determining

how to use the powerful tools of
disturbance-accommodation and frequency

weighting to one's advantage. Once a
controller has been synthesized, it must then
be evaluated to see how it fares against the

design specifications. This check is
straightforward for specifications #1, 2, 3,
and 4. However, for specification #5 the
check is much more difficult.

/_ analysis is a powerful tool that can be
used to determine how much uncertainty can
be tolerated at various locations in the

closed loop system. The measures are
conservative, due to aspects of the
mathematics involved; but the results

provide guaranteed minima of allowable
uncertainty magnitudes that can be of
immense value to the designer. In brief, the

designer places one or more complex
uncertainty blocks A(s) at appropriate
locations in the system transfer function

block diagram. By _ analysis methods he
can then determine how large (2-norm) the

uncertainty (or uncertainties)can be
without driwng the system unstable or

exceeding specifiedperformance hmits.

Typically uncertaintyblocks fallinto the

categoriesof multiplicativeinput,

multiplicativeoutput, additive,and

performance uncertainties.These can be
used to provide conservative measures of

allowable actuator gain and phase

variations,sensor gain and phase variations,

and unmodeled higher frequency plant

dynamics, along with simultaneous

performance guarantees. Feedback
uncertainty blockscan be used as well to

provide measures of allowable plant

parameter variationsfrom nominal values.

The restof thispaper isprimarily

devoted to helping provide insight into how
to use extended H2 synthesis and/_ analysis

effectively,formicrogravity isolation,by

reviewing a logicalapplicationof the

approach to a realisticI-D problem.

Controller Design

To begin the design process, the

one---dimensionalproblem was firstexpressed
in state--_paceform, with payload relative

position,relativevelocity,and acceleration



selected as states. Although many other
state choices could have been made, these
three were chosen to minimize the number of

states necessary and to maximize the

physical intuition possible. The selection
would result in a state feedback control that

respectively modifies the effective umbilical
stiffness and damping, and the effective
payload mass--all being familiar, accessible,
and intuitive system parameters. Relative,
rather than inertial, position feedback would
help to avoid exceeding rattlespace limits;

and relative velocity feedback would provide
a means of damping out system resonances.
The selection of acceleration as a state was

considered desirable due to insight gained
from an analogy to passive isolation systems.
A controller which increases effective

payload mass(by negative acceleration

feedback) would potentially be able to
accomplish disturbance rejection without

unnecessarily sacrificing stability-or
performance robustness.

A second important feature of the
problem formulation was the decision to
incorporate disturbances of two different
kinds, the direct (i.e., onboard the
experiment) and the indirect (i.e., acting via
the umbilical). It had been observed, by
examining the pertinent transfer functions,
that reducing the effective umbilical stiffness
could aid in indirect disturbance rejection
only, but that increasing payload effective
mass could help reject disturbances of both
kinds. Although the primary type of
disturbance was considered likely to be the
indirect, a means was needed to force the

LQR-KBF (alsoknown as LQG) design

"machinery" to increase effectivemass so as

to resultin a robust controller.Including a

directdisturbance provided thismechanism.

After completing the problem
formulation, the next step was to develop a
computer code for use in design and analysis.
A PC-based design code was written in
MATLAB to allow for frequency accom-
modation of both direct and indirect

disturbances. A large selection of frequency
weightings and disturbance accommodation
filters was made available to the designer.
The code computes both feedback and
observer gains. A number of analysis

routines were also written to allow the

designer to evaluate the resultant designs for
purposes of comparison. The number of

system states,system performance, stability
robustness, parameter sensitivity,and

observer quality were items whose

comparisons were facilitatedby these
routines.

With the design and analysis toolsin

place,the next step was to develop the
desired controller. In order to make the

controlleras simple as possible,itwas

decided to begin with the basic LQG

approach (no frequency weighting, no

disturbance accommodation, no direct

disturbance) and to add complexity as

needed. At each stage of additional

complexity an iterativecycle of design and

analysis was employed in an attempt to get
the "best" achievable controllerat that level

of complexity.

The basic LQG approach yielded a
satisfactory controller in terms of
performance; but it had almost no stability
robustness to changes in umbilical stiffness
from the nominal (as measured by feedback
uncertainty). This lack of robustness was

due to the fact that LQG found adding
negative stiffness to be a "cheaper" means of
indirect disturbance rejection than adding
effective mass. No frequency weighting was
found which could rectify this problem.

A direct white disturbance was added in

an attempt to force the LQG design
"machinery" to add effective mass.
Although there were some gains in stability

robustness this was due entirely to changes
in observer gain matrix L. The feedback

gain matrix K remained unaffected (note
that this is fundamental in LQG theory and
is not a numerical problem), and the
feedback stabihty robustness was still
unsatisfactory.

Disturbance accommodation, with a
lowpass filter applied to a large direct
(white) disturbance, resulted in a controller
with excellent feedback- and multiplicative
input stabihty robustnesses, as measured by
singular value checks. The multiplicative
output stability robustness was unacceptably



low ifcross---couplingwas considered possible

between states,but structured singular value
checks indicated that without cross-couphng

the allowable multiphcative output

uncertainty was quite satisfactory. Since

effectivestiffness,effectivedamping, and

effectivemass of the controlled system are

uncoupled forthe true one-dimensional

problem, the stabihty robustness measures of

the system were considered acceptable.

Further, the performance was excellent,

easilyexceeding the specifications.However,

the controllergains were stilllarge at higher

frequencies where unmodeled system modes

were of concern (see specification# 4). It

was thereforenecessary to use state- and

control frequency weighting to force the

controllerto "turn off°tby approximately

100 Hz (i.e.,to reduce loop gain below a

magnitude of one) so as to avoid exciting
unmodeled flexiblemodes.

To reduce the loop gain at the higher

frequenciesitwas necessary in that range (i)

to place a high weight on control,(2) to

apply low weights to allthree states,and (3)
to reduce the directdisturbance. At low

frequenciesthe control weighting was left

constant (i.e.,"flat"),in an attempt to
minimize the number of added pseudostates.

However, the resultingclosed loop system

now had very poor low frequency stability

robustness to parametric uncertainties,even

though itboth retained itsexcellent

performance and now provided the desired
low controllerbandwidth.

options. Consequently the control weighting

was made to be zero at DC (at the expense

of adding a pseudostate). The resultwas a

controllerthat satisfiedthe design

specificationsand exhibited good stability

robustness to parametric and to

multiphcative input- and output

uncertainties.Considering (forthe moment)

only single---paxameteruncertainties,
stability was guaranteed for umbilical
stiffness to within ±99.7% of nominal, and

umbilical damping could be essentially
unknown. Payload mass needed to be
known only to within ±65.2% of nominal.

Having these initial favorable indicators of
system robustness the next step wag to
reduce the controllersize.Further

robustness analysis would then be conducted
on the reduced---ordercontroller.

The controller described above was a

ninth-order controller (i.e., had nine states),
with payload acceleration as its only
required input. Other states and
pseudostates were reconstructed in the
observer. To reduce the controller to a

smaller order, a routine was written in
MATLAB in order to permit removing high
frequency modes (modal truncation) and
weakly controllable and --observable system
dynamics0t) The result of applying this to
the ninth-order controller was a third--order
controller that has all the essential features

of the ninth-order one. The loop gain,
controller, and transmissibility plots for this
reduced controller are shown in Figures
3a,b,c. Note from the transmissibihty plot

10-4 10-3

J
J

lff2 10-1 lOe

Fr_luency (i-_)

A classicaldesign approach to the I0o

problem provided a simple solution to the 5oi
J

robustness issue. It was noted that for a _ °icontrollerwith acceptable nominal

performance the low frequency asymptote for _ .sQj

controllergain could have slope -1 or 0 or ._0_,
greater (Bode-a, log-log scale). That is, _'

control gain at DC couldbe zero (slope_ 1),

finite (slope = 0), or infinite (slope = -1).
Zero DC controller gain would, of course, -_ _0o_.
resultin a dosed loop system that would r Q

achieve the unit transmissibilityof the open
-100

loop system at low frequencies,as desired.

But by using a control weighting filterwith .25%

zero DC gain (slope__ I) the extended H_

synthesis "machinery" could be freed to
consider finiteor infiniteDC controller-gain
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that the transmissibiHty isumty up to 10-_
Hz and that it is below 10-4 at 0.1 Hz.

Notice further that the open loop and closed
loop Bode plots merge at about 100 Hz.
This is due to the fact that the controller has

essentially "turned off" by that frequency
(see Figure 3b).

to J

There are four basic checks that must be

made of any controlled system: nominal
stability, nominal performance, robust
stability, and robust performance. These
four checks are considered below,
consecutively.

The extended H2 synthesis method used
for this portion provides an inherent
guarantee of stability for a nominal plant
with full state feedback. Further, the
"separation principle" guarantees that for a
perfectly known plant a stable asymptotic

?

observer will not destabilize the system.
Thus, nominal stability is assured with the
full order observer, provided the observer
itself is stable. Reducing the controller
order removes this guarantee, but simple
eigenvalue checks verify that both the

reduced third-order controller as designed
and the associated controlled system are
stable for the nominal plant. A simple check
of the loop gain Bode plot (Figure 3a)
confirms the conclusion that the closed loop
system is stable, since it is known that the

loop gain is minimum phase.

The second necessary check isof

nominal performance. As indicated by the

closed-loop transmissibilityplot (Figure 3c)
the nominal performance isquite

satisfactory.Note that the "lessthan i0-2"

spec at 0.1 Hz issurpassed by more than an

order of magnitude. This overdesign was

intentional,and necessary, since plant
modeling errors(open loop system, sensors,

and actuators) will certainly degrade
performance margins.

Robust stabilitymeasures are necessary

to determine whether the closed--loopsystem

willremain stablegiven the anticipated
sensor,actuator,and plant parameter

uncertainties.Three differenttypes of

robust stabilitymeasures were used, for

guaranteeing system stabilityfor

multiplicativeinput, multiplicativeoutput,
and feedback uncertaintiesbelow certain

levels.The mnltiplicativeinput uncertainty
allowable was found to be equivalent to a

guaranteed phase margin (interval) of [--48",
48"], and to a guaranteed gain margin

interval) of [0.304, 5.434]. The actual
margins are even larger (phase margins:

[--55', ÷55"], gain margins: [0,+co]). Since
only one plant output is sensed (viz.,
payload acceleration), the multiplicative

input and output robust stability guarantees
are identical. A feedback uncertainty
measure was used to determine guaranteed
minimum stability I:ounds on uncertainties
in umbilical stiffness and damping, and on
payload mass. It was found, as noted
previously (p. 6), that closed-loop system
stability was guaranteed for

sin_e--parameter uncertainties much larger
than anticipated. It was found, by
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considering the feedback uncertainty
structure, that for simultaneous mass,
damping, and stiffness uncertainties of
±20%, +100%, and ±69%, respectively,
system stability could be assured. Higher
frequency modes of the system were
considered not to be a significant concern
since the controller bandwidth was limited

during design.

Finally, measures were needed of

performance robustness. Structured singular
value plots were made to find conservative
bounds on multiplicative input (and output)
uncertainties that would not lead to plants
with unacceptable performance. Below 10 .3
Hz it was found that for combined sensor

and actuator uncertainties of up to ±11 ° in

phase or of +19% in gain the performance

can be _uarant .eed to remain acceptable. At
higher Lrequenc_es the guarantees are much
better, so that by 220 Hz uncertainties of up
to ±180o in phase or of ±200% in gain are
permissible.

Structured singular value plots were also
used in an attempt to find performance

robustness guarantees in the face of known
parametric uncertainties, but the effort was
only partly successful. The checks led to the
conclusion that for single-parameter
uncertainties in stiffness of +40% both

stability and acceptable performance could
be assured. However, single-parameter
uncertainty bounds found by this method on
damping and mass were too conservative to
be useful. Consequently, real parametric "
studies were conducted on plant-uncertainty
effects on closed-loop performance. It was
found that closed loop performance appeared
acceptable for the various combinations of
parametric uncertainties examined, with
mass and stiffness varied in the intervals

[-,50%, +100% Iand [-9.0%, -I-I00%],
respectively,and with damping varled by
more than ten times itsnominal value.

Conclusion

The above extended H_ synthesis - #
analysis approach was found to produce a
controller that easily satisfies the competing
demands of the posed 1-D microgravity
vibration isolation problem. Further, unlike

8

the classical approach, it is readily
extendable for use on a 3-D problem.
Frequency weighting and disturbance-
accommodation were both found to be

necessary if H2 synthesis is to be used in
involving the posed isolation problem. Their
inclusion, along with a judicious choice of
states, provides the designer with a powerful
and intuitive set of weapons for his design
arsenal. Disturbance accommodation of a
direct disturbance model was found to be

effective in forcing the H_ synthesis
machinery to avoid negative-stiffness
solutions. The result was an actively
controlled system that uses a "smart" form
of acceleration feedback to overcome the

robustness problems that commonly plague
the basic LQG synthesis approach.
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Introduction

It is generally accepted that microgravity space experiments will need to be

isolated from the vibrations inherent on spacecraft in earth orbit[S]. The funda-

mental constraint on any isolation system's capability is the available working
envelope[4]. Figure 1 shows the relationship between the envelope (peak-to-peak

displacement) and frequency for several sustainable RMS acceleration levels.

The graph is for a one degree-of-freedom case and assumes sinusoidal vibra-

tions, but the relationships are acceptable for order of magnitude estimates

even if these assumptions are relaxed.

No definitive specification of the required isolation levels or frequency range

exists. The proposed US Space Station usable specification[S] is also shown in

Figure 1. It is claimed that vibrations below this curve will not adversely affect

microgravity experiments. We have pursued the design of an active isolation

system with a 'reasonable' envelope of 4 inches of travel, and a sustained 1 /at

RMS acceleration. It can be seen from the figure that this will offer isolation
down to 0.002 Hz. The amplitude to which vibrations can be attenuated is con-

strained only by controller design and available instrumentation. Operation at

lower frequencies, however requires a larger envelope, which becomes prohibitive
in terms of available spacecraft space. We have also required that the system

be active in all six degrees-of-freedom, with a rotational range of 40 degrees.

Redundant coarse-fine schemes with magnetic levitation for vibration iso-

lation are discussed in the robotics literature[2]. This approach is particularly

attractive in the microgravity application since it allows the use of magnetic

levitation while overcoming range of motion limitations. We have chosen the

Stewart platform for our coarse stage and a novel magnetic bearing for the

fine stage. The approximate regions of activity in the frequency-displacement

plane of these two devices are shown in the figure. Both stages act to attenu-

ate spacecraft vibrations, effectively reducing vibration amplitudes below their

: , - ]
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Figure 1: Peak-to-Peak Displacement vs. Frequency for Various RMS Acceler-

ations, U. S. Space Station Usable Specification, and Activity Regions of the

Two Actuator Stages

active regions on the plane. As an example, it can be seen in the figure that

a vibration of the spacecraft with 10 inches of displacement at a frequency of

1 Hz falls outside the active region and could only be partially attenuated. It

should be noted that such a large vibration is unlikely. If the displacement was
only 1 inch, however, the coarse stage would absorb all of it except about 0.005

inches, and the remainder would be reduced down to the micro-g level by the

fine stage.

The combination of the Stewart platform and a magnetic bearing allows

continuous isolation at frequencies above 0.002 ttz, and a compact, reliable

package suitable for the application. These choices and some preliminary design

concepts will be discussed in detail.

2 Stewart Platform

The Stewar_ platform is a six degree-of-freedom parallel manipulator first pro-
posed by Stewart[5]. It has been extensively used in aircraft cockpit simulator

II



applications, and substantial design information is available in the literature[l].

Figure 2 shows the mechanism in our proposed configuration. Six linear ac-

tuators (legs) connect a base (bottom) to a platform (top). The base will be

mounted in the spacecraft and move with it, while the platform tracks an inertial

reference frame. We propose the use of stepper motor driven ball lead-screws
as actuators.

Figure 2: The Stewart Platform

This mechanism was chosen over other candidates such as a carriage/gimbal

approach, or a serial linkage mechanism because it has the following features:

* Inherent rigidity. The parallel connection of the actuators gives the mech-

anism rigidity on the order of the extensional rigidity of the actuators.

For the proposed actuators, this will allow controller design to ignore the

dynamics of the mechanism. The effects of 'umbilical' connection to the

platform will also be negligible.

* Determinate lnverse kznemaltcs. The actuator lengths required to achieve

a prescribed orientation are found directly from a coordinate transforma-

tion from the base to the platform frame. This is seldom the case for a

serial linkage. This will also simplify control.

• Compactness. The configuration proposed here places the fine stage on

top of the platform for convenience in testing. A fully developed imp[e-



mentationcouldlocatethefinesystemandmicrogravityexperimentin
thespacebetweenthebaseandplatform,resultinginacompactpackage.

TheStewartplatformhassomedisadvantagesthat mustbeconsidered.It is
nonlinearin its responseto actuatorlengths,its generaldirectkinematicshave
not beendiscoveredin closedform,andit hassingularitiesin its operational
space.Thefisttwoproblemscanbeovercomewithdigitalcontrols.Thesingu-
larities, which are points or loci where the mechanism gains a degree of freedom

and the actuators can lose control of it, must be addressed in design.

A simulation code has been written to allow exploration the design alterna-

tives. Figure 2 is an example of its output. Preliminary results indicate that our

specification (4 inches translation, 40 degrees rotation) will be achievable with
actuators 10.5 inches long in the retracted position, and with 9 inches of stroke.

The simulation can confirm that singularities are safely outside the working en-

velope. Commercial actuators with the required range, load capacity, speed and
acceleration have been identified.

3 Magnetic Bearing

Two axes of a six axis magnetic bearing are shown in Figure 3, mounted atop

the Stewart platform. A ferromagnetic cube is at the center of the bearing.

Two pole pieces protrude from each of its faces (four shown) and each pole

piece is surrounded by a coil. This part of the structure is called the core and is

mounted to the platform with four posts. Three ferromagnetic bands surround

the core (one shown) forming three independent magnetic flux paths. The core

is capable of exerting three orthogonal forces, and three orthogonal torques on

the bands. For the axes shown, equal currents in each pair of adjacent coils will

cause magnetic flux to flow in a local circuit, causing an attractive force to the

band. By controlling these currents a prescribed force can be exerted on the

band along the axis that crosses the page form left to right. If the currents in

adjacent coils are not equal, some flux will flow around the outside of the band

and through the center of the cube. This will create a controllable torque on
the band around the vertical axis.

Similar pole pieces and coils will protrude from the other faces of the cube,

and corresponding bands will surround them. These have been omitted so that

all parts can be seen. Also, the size of the bearing and the gaps have been

exaggerated for clarity. Flux sensors will be mounted in the pole pieces and

this will allow the position of the bands relative to the core to be calculated

for control. The microgravity experiment will occupy the space surrounding the

bearing, and be attached to the bands.

This configuration was chosen over other levitation approaches such as Lot-

entz actuators or magnetic actuators located on the periphery of the experiment

package because it has the following advantages:



Figure3: MagneticBearing

Compactness. The high force capability of the magnetic bearing relative

to a Lorentz actuator of similar size and power consumption suits the
application. Testing in earth gravity will be facilitated, and levitation

during launch to protect sensitive instrumentation may be feasible. Also,

the rigid structure required to mount actuators around the periphery is
avoided.

Force/torque balance and rotational range. Actuators capable of the re-

quired forces mounted on the periphery of the experiment are capable of

torques far greater than is required, and they limit the rotational range

of the experiment. The proposed design approach brings the relative

force/torque magnitudes closer to the requirement, and allows substan-

tial rotational range.

Integral sensor capab_hty. Compact semiconductor magnetic flux sensors

(hall effect or magneto-resistive) can be utilized to both stabilize the sys-

tem and infer relative position. No elegant integrated approach is known
for Lorentz actuators.

.Magnetic bearings have typically been avoided in 'large gap' applications be-

cause of their nonlinearity (force is proportional to the square of flux). We

feel that emerging Digital Signal Processor technology and control work will



allowusto overcometheselimitations,Finiteelementtoolswill beemployed
to developadesignthatisbothcapableofhighforcesandtorques,andavoids
nonlinearitiesassociatedwithsaturationandfluxpathvariations.

4 Conclusion

A conceptual design is proposed for a coarse-fine actuator pair that synergis-

tically combines two dissimilar six degree-of-freedom actuators. This design is

particularly suited to the microgravity isolation application because of the way it
spans the useful portion of the frequency-displacement plane. The combination

is shown together in Figure 4.

i!Jki:liar!:/:¸': i ¸:::
Figure 4: Coarse-Fine Actuator

Ongoing work will more precisely define the exact geometries, materials, and
components to be used. Simulation will allow the specification of a Stewart plat-

form that meets the specification, and uses commercially available components.

Finite element methods will be _sed to optimize the magnetic bearing design.

A simultaneous effort in controller design will be undertaken. A test rig will

then be constructed to verify the design and quantify the performance of the

actuators and controller together.

We took forward to and welcome any input that can be worked into our

design effort.
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1 Introduction

The authors have previously presented a conceptual design for a coarse-fine actuator pair and discussed

its efficacy in the microgravity vibration isolation application[l]. The coarse stage comprises a Stewart

platform [2] which is mounted in a spacecraft and isolates low frequency, high amplitude vibrations. The

fine stage is a novel magnetic bearing mounted on the Stewart platform (between the legs for compactness)

and levitates the experiment to isolate all frequencies at low amplitudes. The combination is illustrated in
Figure 1.

::::::::::::::::::::::::::::::::::::::::::::::::::

2:::::::::::::::::::::i ::: :::::.:::: 5-: +:: : :;:' 5 ::/
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Figure 1: Coarse-Fine Actuator Pair

This paper will present a survey of l)ul)lished 6 DOF levitation designs and discuss a novel magnetic

bearing in terms of design, predicted performance, and control issues.

"Supported in part by the NASA Lewis Research Center and the Commonwealth of Virginia's Center for Innovative
Technology.

I



2 Survey of Published Designs

Several designs for 6 DOF levitation are discussed in the literature. A comparison of the specifications for
these designs is given in Table 1.

Group Trans. Rot. Force Envelope Weight Actuator Sensor
Honeywell
N. Wales

NASA

SatCon

IBM

Toshiba

+5 mm

+5 mm

+4 mm

+10 mm

+5 mm

+2 mm

+1.6 °

< +.2 °

+3 ° c

+8 o

+4 °

+1.5 °

43 N

.04 N °

445 N

4N

32 N

20N c

27x34x50 cm

100xl00xl00 cm

30x30x15 cm c

40x40x12 cm c

25x25x15 cm c

25x25x20 cm

36 kg
b

?

4.9 kg
?

8 kg

Mag. Brng.
Lorentz

Mag. Brng.
Lorentz

Lorentz

Mag. Brng.

Eddy & Flux

Capacitive

Eddy

Eddy

Optical

Eddy

°Requirement, not limitation

bIncludes experiment package
"Estimated by authors

Table 1: Comparison of Published Designs

Four designs specifically for microgravity isolation have been published, ttoneywell [3] has a well devel-

oped system called FEAMIS with which they have demonstrated impressive isolation performance. The

system is designed for the Space Shuttle experiment configuration. The University College of North Wales

[4] also has a well developed system designed for the European Space Agency experiment configuration.
NASA [5] and SatCon [6] both have laboratory levitation systems.

Two levitation designs were developed for different applications, but they are mentioned here because

they are similar and could be easily adapted to the isolation application. IBM [7] has a laboratory levitated

robot "wrist" which enhances robot accuracy and performance. Toshiba [8] has a satellite antenna pointing

system which is fully developed. Both devices have demonstrated positional accuracies on the order of 1 #m.

Isolation of vibrations with large amplitudes -- typically occurring at low frequencies -- requires a

large translational range. SatCon's system has tile largest range, but there is a significant tradeoff with the

device's force capability. A coarse-fine approach would allow both a large range, provided by the coarse

stage, and a high force capability, since the levitation gaps are small. There is no available data on the

rotational range requirements of the application. Isolation with an umbilical disturbance requires a high

force capability as is offered by the systems from Honeywell, NASA, IBM, and Toshiba. Space and weight

should be minimized in any spacecraft. SatCon, IBM, and Toshiba's systems offer advantages in envelope
space and weight.

The choice of the actuator technology between Lorentz force and magnetic bearings has no definitive

advantage. Lorentz actuators offer linearity, simplicity, and compactness. Magnetic bearings offer higher
force capability and lower power consumption, particularly if gaps are minimized.

Four position sensor technologies offer promising performance. Eddy current position probes are simple

and robust, but bulky and heavy for large gaps. Capacitive sensors are simple and hght weight, but can

be noisy in unconstrained environments. Optical lateral effect photo-diodes are compact and quiet, but

they require substantial supporting electronics. Hall effect flux sensors can be used with magnetic bearing
designs both to linearize the control problem, and to measure position.

3 Design

The magnetic bearing proposed has two parts: a stator which is attached to the spacecraft, and a sur-

rounding "flotor" to which the experiment is attached.

L



The stator is illustrated in Figure 2. It has twelve pole pieces and coils arranged around the surface

of a cube. The cube and pole pieces are ferromagnetic. Each pair of pole pieces and the region of the

cube to which they are attached comprise a typical "horseshoe" electromagnet causing an attractive force
toward the nearby flotor. Magnetic flux through the center of the cube will cause an imbalance in the flux

levels of a pair of pole pieces, resulting in a net torque on the flotor. Differential Hall effect sensors will be
located in the cube side of each pole piece to measure the local flux. All electrical connections will be to

the stator.

_i!, , .... .

_i__ I / I I

-- --7
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Figure 2: Stator and Typical Coil

The flotor is illustrated in Figure 3. Three ferromagnetic bands are rigidly attached to each other, but

form independent flux paths. The bands are thicker in the region near the pole pieces to avoid saturation.

Flux which passes through the center of the cube is returned through the remaining portion of the bands.

Four mounting posts will attach to corners of the cube, and pass through clearances in the flotor. These

posts could carry cooling fluid to be circulated through the stator if it is required.

Design equations relating force and moments to the coil currents will be derived below referring to

Figure 4. The figure shows a schematic slice through the stator and flotor with appropriate nomenclature

and sign convention information. It should be noted that a complete model comprises three such systems,

but they are identical and orthogonal, so only one will be analyzed.

The relationship between coil currents (i_ .... , i_) and the force and moment generated in one slice

of the stator (F_, Mz) can be derived from Maxwell's Equations. The first Maxwell equation (I), which

relates magnetic field intensity (I-_[)around a closed path to the electric current density (J) through that

path, is discretized and applied to closed loops drawn through the slice. N is the number of turns in each

coil, and Gi are the air gap lengths which are dependent on the stator's position relative to the fiotor.

The iron flux paths are ignored because their reluctance is low relative to that of the air gaps. Many such

equations can be written (2), but only three are independent.

/cl1 .dl=/s J .da (1)
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Figure 3: Flotor

HtGt - H2G2 = N (il - i2)

-H3G3 + H4G4 = N (-i3 + Q)

-HIGl - H4G4 = N (-il - i4)

-H2G2- H3G3 = N (-i_- i3)

(2)

The second Maxwell equation (3), which ensures conservation of magnetic induction (]B), is used to

obtain a fourth independent equation (4).

v_ . B_= 0 (3)

B1 + B2 - B3 - B4 = 0 (4)

We can assume linear magnetization in the air gaps (5), where tLo is the permeability of free space, to

obtain a relation between magnetic induction in the gaps and coil currents (6).
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Figure 4: Schematic Cross Section of Magnetic Bearing

Bi
Hi = _ i= 1,...,4

Po

t32 =
B3

B4

Npo

G1G2G3 + GtG2G4 + GlG3G4 + G2G3G4

G2G3 + G2Ga -G3G4 G2G4 G2G3
+G3G4

GiG3 + GIG4 G1G4 G1G3
-G3G4 +G3G4

G1G2 + GxG4 -G1G2
G2G4 G1G4 +G2G4

GiG2 + GIG3
G2G3 GiG3 -GIG_ +G2G3

{,1)i2

i3

i4

(5)

(6)

The four gaps are geometrically related to the offset of the stator with respect to the flotor by the

relations (7) which assume small angles.

Gt =Go-y-sO

G: = Go - y + sO

(;3 =Go+y-S0

G4 =Go+y+s0

Go is the air gap length with the starer centered in the flotor.

(;)



The magnetic energy stored in the magnetic bearing (tom) is found from (8) where Aa is the area of
the pole faces.

The force and moment on the stator are found from the relations (9) and (10).

0 tom

or (9)

0tom
Mz = 0-'-_ (10)

After considerable algebraic manipulation, and introduction (without loss of generality) of the linear

current transformations (11) we obtain the force and moment relations sought (12) and (13).

Jt = il + i2 + i3 + i4

J2 = il -- i2 + i3 -- i4

j3 = il - i2 - i3 + i4

(11)

F_ = AgN2#° (Goj_ + Osjl + yJ3) (G20j3 - O_s2j3 + Goyj_ + Osgjl)
4Go (Go2 - 02s 2 - y2) 2 (12)

Mz = AgN2sp° (Goj2 + O.sjt + YJ3) (G_ja + GoOsj2 + Osyj3 - yZjl)
4G0 (G_ - 02s 2 - y2) 2 (13)

The current j2 is analogous to the bias current in a conventional bidirectional thrust bearing and

could be fixed at a constant value -- nominally half of the maximum current. The force generated is

predominantly driven by J3 and the moment by Jl. The system is unstable (negative stiffness) in both

translation and rotation. The currents it ..... i4 can be found by a pseudo-inverse technique from Jl,j2,j3.

Closed form analytic inverses to (12) and (13) have been found for a known position.

4 Predicted Performance

The equations of the previous section were used to predict the performance of a specific design. The design

has a center cube of 2 in. on a side, pole faces of 1 x .5 in., and pole length of 2 in. Maximum current

is determined by allowing a coil current density of 5000 amp/in s which is known to be conservative from

previous designs. The gap in the centered position was chosen to be .125 in. plus an allowance of .030 in.

for inclusion of flux sensors and a protective layer on the inside of the bands. The resulting specifications

for the design are presented in Table 2. Tile 53 N force is a continuous worst case, with the stator moved

away from the flotor in the direction of the force. The continuous force capability in the centered position

is 175 N. Intermittent force capability is limited only by the current capability of the amplifiers, and the

saturation fimit of the magnetic material used. Using Vanadium Permadur with this design, saturation

would occur at about 1000 N. Of the 1.5 kg weight, the flot_r comprises only 1.2 kg.

6



Envelope
15x15x15 cm t Weight4.5 kg t

Table 2: Specification of UVA Design

When compared with the designs presented in Table 1, the UVA design has several advantages. The

envelope is substantially smaller than any of the previous designs, while the performance is similar. In

addition to saving space, this compactness allows the flotor to be naturally rigid, and thus avoids control

problems with structural dynamics. The design is quite dense in comparison with the others, but it is

lighter than the lightest for which data were available.

5 Control

A regulator has been designed to reject the disturbances caused by the umbilical connection to the exper-

iment. A schematic is shown in Figure 5. Nonlinearities in the magnetic bearing are eliminated by using

flux feedback in a minor loop [3]. Six accelerometers mounted on the flotor produce a generalized accelera-

tion signal which is fed back through a linear controller. More details on the controller are available in [9].

The desired control force is processed through an inverse magnetic circuit model to obtain a desired flux

signal. This model could be either a digital algebraic model, or an appropriately trained neural network.

Magnetic Bearing

____._ Trar_- T [ iil_ __-"----_--7___ __[o Magnetic

Permeance _ Coils

j iL___ l

Control _ _ Noise

/(PD) I I

Noise _ omelcrsACcele¢"

Mag. Ckt. Controller

Model (112)

Plant i = _

Dynamics
Umbilical

D isturbance

x (X-D)

I IRelative

• Position

| S_nsors

Noise

7---

Figure 5: Control Schematic

A relative position sensor has not been chosen but the optical scheme used in IBM's design is a strong

candidate. Alternatively, the current and flux signals could be processed to infer position [10]. The purpose

of the relative position signal is only to prevent collision with the walls, so accuracy demands are relatively
lOW.
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6 Conclusion

A design for a novel magnetic bearing, proposed as the fine stage of a coarse-fine actuator for microgravity

vibration isolation, has been presented. The bearing is novel in that it uses a geometry that has just

three independent flux path systems. This contrasts the twelve flux path systems (six bidirectional thrust

bearings) used in conventional designs. The novel design results in compactness, light weight and high per-

formance, when compared with the published designs. A control system is proposed to reject disturbances
caused by an umbilical connection to the experiment.

Future work will focus on building a laboratory version of the bearing and control system.
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The limitations on the isolation of stochastic vibrations for microgravity space experiments are explored.
These limitations result from the restricted interior space available for vibration isolation. A one-degree-of
freedom representation of the experiment-spacecraft system is used, and an ideal vibration actuator is assumed.
A kinematic representation results, and the problem becomes one of finding the minimum acceleration trajec-
tory within a pair of stochastic walls. The wall motion is characterized by an ergodic, stationary, zero-mean,
Gaussian random process with known power spectral density. The geometry of the wall trajectories is defined
in terms of their significant extrema and zero crossings. This geometry is used in defining a composite trajectory
that has a mean square acceleration lower than that on the optimal path satisfying the stochastic wall inequality
constraints. The optimal control problem is solved on a return path yielding the mean square acceleration in
terms of the distributions of significant maxima and first-passage time of the wall process. The methodology is
applied to a microgravity isolation problem to find the lower bounds on root-mean-square acceleration given the

disturbance power spectral density.

Nomenclature

A = matrix in state dynamics

B = vector in state dynamics

c, = constants in optimal control

d = microscopic component of y(t)
F = cumulative distribution function

f = probability density function
G = final condition cost

G(s) = transfer function of shaping filter
H = Hamiltonian

J = cost function

L = maximum stroke of experiment

m_ 4 = fourth moment of a sample of T-
n = bandlimited white noise

S = power spectral density.

s = complex frequency variable

T = first-passage time
t = time

tj = time at significant maximum

t2 = time at zero crossing
u = experiment acceleration

x = state vector, = (x_ xz) r

x, xt = experiment position
x2 = experiment velocity

y = wall process
y_ = upper wall true position
y_ = lower wall true position
y.p = upper wall constraint
Y_o,, = lower wall constraint

Yrna_ = maximum of wall process
.9, 5h = macroscopic component at y(t)

.1'2 = macroscopic component velocity
z = significant maximum position
a = dirac delta function
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Subscripts

d

f
max

N

n

T

Y

g

= Lagrange multiplier for dynamic equations
= Lagrange multiplier for final condition

= expected frequency of upcrossings (cycles)
= expected frequency of maxima

= frequency, rad/s

= damped natural frequency, rad/s

= damping coefficient

= microscopic component
= final time

= at maximum

= normal

= bandlimited white noise

= first-passage time
= wall process

= macroscopic component

= significant maxima position

Introduction

HE microgravity environment of space may permit
advances in material science experiments. Such experi-

ments could aid in the understanding of basic physical phe-

nomena, quantify the limitations and effects imposed by

gravity, and spur application to Earth and space based
processes and products. A microgravity environment could

potentially eliminate buoyancy-driven convection, sedimen-
tation, and hydrostatic pressure as well as yield other advan-

tages.

At this time, the acceleration environment requirements for

various experiments are not well known. _ An assessment of
existing theoretical and experimental data available up to 1985

indicated acceleration levels below 10 6 go would be required

for frequencies below 0.1 Hz for many of the processes. The
requirements at higher frequencies are somewhat lower. 3

Work to determine the levels necessary is in progress by

various materials experiment researchers. An example is a
twin crystal growth experiment to be carried out on space-
craft.4

An essential part of the development of a microgravity
experiment program is the characterization of the low
acceleration environment aboard spacecraft. NASA has

carried out a series of measurements reported at various

- LII



t-

Table I Microgravity space experiment acceleration environment'/

g/go F, Hz Source

Quasisteady or "dc" acceleration disturbances

10 -7 0 to 10 -3 Aerodynamic drag
10 -s 0 to 10 -3 Light pressure
10 -7 0 to 10 -3 Gravity gradient

Period acceleration disturbances

2 x 10 -2 9 Thruster fire (orbital)
2 x 10- 3 5-20 Crew motion
2x 10 -4 17 Ku band antenna

Nonperiodic acceleration disturbances

10 -4 i Thruster fire (attitude)
10 -4 1 Crew push off

conferencesJ .6 A summary of this data was presented in Ref. 7

and is repeated in Table 1, Additional results have been re-

ported in Refs. 8 and 9.
The vibration levels reported in the above literature for

spacecraft are significantly greater than allowable for material
science experiments. In order to achieve accurate and repro-

ducible results in such experiments, vibration isolation will be

reqttired. J Acceleration disturbances in the orbiter environ-

ment cover a wide frequency bandwidth, from 0 to 100 Hz.

Sources include spacecraft drag, light pressure oscillations,

manned activity, and thruster fire. The frequency and

amplitudes of these accelerations are summarized in Table 1.

The frequency and amplitude of any particular vibration
source determines the level of isolation that can be achieved.

At relatively high frequencies, above approximately 10 Hz,
passive vibration isolation is normally possible. Two examples

of such isolation systems are reported in Refs. 10 and 11. For

lower frequencies, active vibration isolation is necessary. One

of the few such systems is examined in Ref. 12.

A fundamental restriction on active microgravity vibration

isolation systems is the limited available volume aboard space-

crafts for experiments. This kinematic constraint cannot be

overcome through improvement of the vibration isolation

control system, sensors, or actuator. The purpose of this

paper is to explore the limitations on vibration isolation sys-

tems arising from the stroke restriction. Thus an ideal vibra-

tion actuator is assumed, and the problem is solved in part by
optimal control theory. This work is an extension of research

on isolation limits under sinusoidal excitation, msIn this paper,

the excitation is a wideband, zero-mean stochastic process. A

lower bound on the root-mean-square acceleration is deter-
mined in terms of the maximum stroke.

Optimal Control Formulation

While the isolation problem for microgravity space experi-

ments is multidimensional, this analysis examines the one-di-
mensional case. Consider the system illustrated in Fig. 1 with
experiment position x(t) and wall positions Yl(t) and y2(t).

The experiment is connected to the spacecraft by umbilicals,
such as power or fluid lines, and by a vibration isolation

actuator. Although the spacecraft has a finite mass, it may be

considered to have infinite impedance for this analysis since

the spacecraft-to-experiment weight ratio is very large. The

spacecraft acts as an external base motion transmitting forces
through the umbilical and the actuator.

An ideal actuator is assumed. Therefore, the acceleration of

the experiment is the minimum acceleration possible given that

the experiment stay between the two walls. The effects of the

power/data/cooling umbilicals represented in Fig. 1 are re-
moved through the ideal actuator. Thus, the problem is re-

duced to a kinematic representation. The vibration isolation

problem becomes an optimal control problem: find the opti-

mal trajectory (minimum acceleration) given the constraint

conditions (moving walls). This problem formulation was
used previously by the authors to find the limitations on
isolation for harmonic disturbances. 13

EXPERIHENT ENCLOSURE

m __

y

r

Fig. 1

EXPERI."IENT

UMBILICAL ACTUATOR

One-degree-of-freedom isolation problem.

Q.

Yup = y{t) *- L/2

Ylow= y(U - L/2

TIME

Fig. 2 Optimal path through stochastic wails.

Significant Extrema

The kinematic formulation allows the stochastic problem to

be easily conceived. Figure 2 illustrates. An optimal trajectory

x(t) is sought between two walls whose motion is described by
a single zero-mean stochastic process y(t),

Yup =y(t) + L/2

Ytow = Y (t) - L/2

where L is the maximum stroke of the experiment between the
two walls.

Let the experiment acceleration be denoted as u(u = YO.
Then the cost function J to be minimized is

J=t_u2dt (I)

with the constraint

L L

y(t)--_<_x(t)<ytt)+-_, O<t (2)

for a given wall centerline motion y(t). The optimal trajectory

will be in general smooth with as few extrema as possible. The

trajectory will also cover as little distance as possible. As pre-
viously reported in Ref. 13, with a sinusoidal disturbance, the

optimal trajectory tangents the maxima of the lower wall and

the minima of the upper wall when the amplitude of y(t) is

greater than L/2. Given these tangencies, it is an easy task to

compute the minimum acceleration path connecting them. Al-

though this path may intersect a wall's path, as was reported

in Ref. 13, this "cheating" results in less than a I_0 reduction

in root-mean-square from the true optimal path. By dropping

the inequality constraints from the optimal control problem

ORIGINAL PAt:)Z _._2
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and replacing them with the tangency conditions at the wall's

extrema, a tight lower bound on the minimum root-mean-

square acceleration is obtained. This is the approach taken

here with the stochastic problem. For this analysis, the wall

process y(t) and its derivatives are assumed to be stationary,
zero-mean, Gaussian random processes.

Once again, the wall inequality constraints are ignored and

are replaced with interior point equality conditions. A

tangency condition is assumed at some of the walls' extrema

and the trajectory is required to cross zero at the same time as

y(t). This last requirement is made to ensure a tight lower

bound. Note that a zero crossing of x(t) must occur at or

before y(t) leaves the _L/2 interval. However, for most

random processes y(t), the additional requirement of
simultaneous zero crossing results in a realistic and tighter

lower bound. The upper wall is ignored as a constraint when

y(t) > 0 as the lower wall is wheny(t) <0. Thus, only upper

wall minima when y(t) < 0 and lower wall maxima when y(t)

>0 are eligible tangency condition points. Figure 3 illustrates

this geometry and a composite path connecting the prescribed

interior points. The optimal composite trajectory satisfying

these interior point equality constraints will have a root-

mean-square acceleration lower than that of the optimal

trajectory satisfying the original inequality constraints under

almost all conditions. Note that the composite trajectory is not

required to have first derivative continuity at the interior zero
crossing points. (It will, of course, have a continuous first

derivative at the extrema tangent points.) It should be pointed

out that the composite trajectory is not intended to be an

implementable optimal control path; the trajectory is a

theoretical tool to investigate the limitations on vibration
isolation.

Not all eligible lower wall maxima and upper wall minima

will be tangented by the optimal composite trajectory. In

Fig. 4, note that if ly(t)l <L/2, as shown on the left side of

the figure, the optimal path is x(t)= 0. However, if the

eligible extremum crosses zero (i.e., if ly(t)l >L/2) as on the

right side, the optimal composite path must depart from

x(t) = 0 to avoid collision with the wall.
Because of the wideband character of the stochastic wall

acceleration, many extrema tend to be clustered at every peak

of y(t). The composite trajectory will only tangent one of

these extrema and that only if ly(t) l > L/2. The effort here is

to distinguish the extrema which the composite trajectory

needs to include (in order to be a useful lower bound) from the
bulk of immaterial extrema.

A wall extremum in a time interval that requires an increase

in the cost function during the interval is classified here as a
significant extremum, (This is, admittedly, not a rigorous
definition; however it satisfies the purpose of this investi-

gation.) The optimal composite path, therefore, runs between

Yap= yh) "" L/2

• _ ylt) /_ composite

L ....... _

Ylow = y(tl - L/2 O tangency eqtlaJi_y

zero r to_sinlt _lu_ity

TIME

Fig. 3 Stochastic walls, interior poin! equality conditions, and com-
posite Irajeciory.

significant extrema and y = 0. The composite path is a com-

bination of paths of the experiment at rest, departing to an
extremum, and returning from an extremum as indicated in

Fig. 4. Each of these cases can be analyzed in terms of a return

path. [Departing paths are kinematically the same as returning

paths since the random processes y(t) and p(t) are inde-

pende.nt since they are Gaussian. A rest path is equivalent to a

return path when ly(t)l < L/2.] By finding the expected value

of the mean square acceleration on a return path, the mean

square acceleration of the composite path is determined, and

a lower bound is set on the optimal trajectory mean square

acceleration. Thus, a lower bound is found by characterizing

the distribution of the significant extrema in time and
position.

Solution in Terms of the Significant Extrema

The return path and its mean square acceleration given a

significant extremum is now found. Examine the time history

shown in Fig. 5. The optimal path during the interval (fi,t2)

satisfying the wail inequality constraints over a much larger

interval has, in general, a root-mean-square acceleration

bounded below by the root-mean-square acceleration on the

return path connecting points I and 2. [This will be true for all

but wideband y(t) processes with large maximum stroke, L.
Note that j,(t) can be wideband with y(t) not.] The boundary

constraints at these two points for the return path are

x(O = z x(t9 = 0

k(ti) = 0 k(t2) = free (3)

where z = Ymtx- L/2.

O

I-

O
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/
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!
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Fig. 4 Sisniflcant extrema and composite trtJectory.
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The velocity boundary condition at time t 2 is left free since

this condition depends on the next significant extremum, the

location of which cannot be readily derived even in a prob-

abilistic sense. Therefore, the velocity at time t2 is unspecified

so that the return path root-mean-square acceleration will be a
lower bound on the minimum acceleration. The optimal con-

trol problem is thus reduced to that over the time t_ to t2 with
cost function

I'2J = u z dt (4)
/I

and the boundary conditions of Eq. (3).

This problem is solved by the calculus of variations

(Appendix A) yielding the optimal trajectory.t4
The mean-square acceleration on this trajectory is

]'"MS(2} = u z dt = --_ (5)
t_

where T = (h- h), the time from significant extrema to zero

crossing, or the first-passage time. This is the lower bound

sought, Assuming that the wall process y(t) is ergodic, the
minimum mean square experiment acceleration attainable

with an ideal isolator must be greater than the mean-square

acceleration of the composite trajectory,

where El • } is the exact value operator _S

. o o -_ fir (z,t) dz dT
(6)

Here, f_r(',') is the joint probability density function on the

significant maxima z, and the time from significant maxima to

zero crossing T. (The significant extrema problem can be

solved for in terms of significant maxima because of the

symmetry of the problem.) Equation (6) can be rewritten _

= 3zZf_(z) E -_--_Jz dz (7)e (-_7) 0

where E l (!/T4)iZ I is the conditional fourth moment of T- l,

and f_ (.) is the probability density function of the significant
maxima.

Distribution of Significant Maxima

Consider the stationary, zero-mean, Gaussian random

process describing the wall's acceleration .P(t). This process
can be characterized by its power spectral density Sy(w). t6 The
mean square of the wall acceleration is the integral of this over

i

0.6

-- 04

Q,

0.2

0

-2,

1 t

_'1/Irl * I

, , -

0 t.0 2.0

•/0" r

._.0

Fig. 6 Probability density function for the distribution of maxima of
a stationary Gaussian process.

frequency t7

E072) = a_= I" Sy(w)d¢o (8)
J- an

(simply the area underneath the power spectral density curve).

The mean square of the velocity and position processes are

2-f7 S'(_°) d_ (9)E(.P z) = o.v- . ¢°2

17 SAo)E(.V2) = e_ = _. ---7 dw (I0)

For a Gaussian process, the density of upcrossings ofy = 0 for

the y(t) process TM is

vy - 2_ra:, (11)

and the density of maxima ofy(t) is

ay

v-:, = 2_ro----_ (12)

Rice t9 and Houston and Skopinski 2° have shown that the

probability density function for the distribution of the

maxima of a stationary Gaussian random process is dependent

only on the ratio #r/vy and the standard deviation of the

process a_

[ ,:°, 1f,.._,0,/o,)= (1-4/_:,)'%_ (I --r;--, ,.,:,t
-- p V/Jgy) J

-o,]+ (2_) '_,, fN FN _/__ 1),_ (13)

where fN and FN are the normal probability density function
and its integral

f_(x) = (2_r)- '% -¢:/2>

F_c(x)=I_,. f(a) da (14)

(Lin 2_ has an interesting discussion on this maxima distri-

bution.)

The ratio #y/uy can be regarded as the average number of
maxima between upcrossings for the y(t) process) s Prob-

ability density functions for the distribution of maxima of a

stationary Gaussian random process are shown for different

values of this ratio in Fig. 6.

A random wall process typical of the microgravity vibration

environment will have many maxima per zero crossing

(#y/v r It, 1 ). Most of these maxima are clustered near the
peaks of the process and can be considered the high frequency

component, ts Figure 7 illustrates. The random process y(t),
as was shown by CrandaII, js can be decomposed into the sums

of a macroscopic component )'(t) and a microscopic com-

ponent d(t)

y(t) =P(t) +dl (15)

The macroscopic component has a much smaller root mean

square od and greater frequency of zero crossing vd than the
macroscopic signal (o_, _). The macroscopic component will

have nearly the same amplitude as the original signal. The
distribution of maxima given in Eq. (13) is the distribution of
both the micromaxima and macromaxima. Cie_rly, the
micromaxima do not contribute (substantially) to the cost

-- L '
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function; therefore, they are, by definition, not significant
maxima.

The distribution of significant maxima is therefore derived

from the distribution of macromaxima, the maxima of thep(t)

process,

[(1- ,,, ,,.,1/>.. =(i-

"°'.d (16)

To obtain the density function for the distribution of

significant maxima from the distribution of macromaxima it is

only necessary to recall Eq. (3) with Pmax replacing Ymax

z - (17)
:'max<L/2

find the cumulative distribution on z in terms of the cumu-
lative distribution on :'max

Fymax (Z + L/2) Z > 0
F_(z) = (18)

0 z<0

and to differentiate with respect to z is

Fymax (L/2),5 (Z) + f_max(Z + L/2) Z > 0
fz(z) = (19)

0 z<0

where ,5(.) is the dirac delta function. Note that the portion of

the Pmax distribution between - _ and L/2 maps into a dirac

delta at z = 0. The integration of this part off,(z) in Eq. (7)
will be zero

The nonsignificant maxima, therefore, do not increase the

expected mean square. (Note that EI(1/T4)Iz = 01 is finite
since Tis defined as the time for the._(t) process to reach ._ = 0

starting from rest at Ymax. When z = 0, pmax = L/2; therefore,

T is greater than zero.)

The tightness of the lower bound on experiment mean

square acceleration given in Eq. (7) depends on the accuracy

o
i-
ra

o
I.

r/

\

of the geometric configuration, Fig. 5, in representing typical

wall position histories. The decomposition, or smoothing, of

the y(t) process yields a macroscopic random process p(t)

upon which to base the lower bound. If the random process

p(t) has close to one maxima per upcrossing on average (it

must have at least one since it is continuous), the typical
geometric configuration will resemble Fig. 5. Thus, for a

narrowband random process p(t), the bound will be very tight.

(In the limit this approaches a sinusoid with slowly changing
random amplitude and phase22; the resulting bound would be

only a few percent low.) For a wideband macroscopic process
the bound will be considerably looser but non-trivial. It is

therefore desirable that the decomposition produce a macro-

scopic process with an average number of maxima per up-
crossing _/_,y) close to one. The smoothed process p(t)

should also have nearly the same variance as the original signal

p(t). A method for the decomposition ofp(t) and d(t) will be
discussed later with the application.

First-Passage Problem

An expression for E I(I/T4)Iz I can be found explicitly if
the conditional probability density function fr(TIz) is
known Is

EI(IIT')Iz I : -_ fr(TIz) dT (21)
_0

The distribution of the first passage time of a stochastic

process T is a classical problem probability that has been
tackled with limited success by many authors." 3-2_ No exact

theoretical solution exists. Many approximate methods have

been used including series solution, 23 Poison approximation, 24
numerical probability diffusion, and Monte Carlo tech-

niques. 25 The particular variant of the first-passage problem
of interest here is nonstationary due to its initial conditions

P(h) =Pmax

_(t_) = 0 (22)

and can be expected to have a crossing in the near future since

p(t) is zero mean (This, in contrast to the first passage of a
level p = a _, a_, which will occur extremely infrequently.) The

nonstationary, quick-crossing nature of this problem suggests
Monte Carlo simulation as the preferred method of solution.

It is not necessary to generate the conditional probability

density function of Tin this manner; only theE{(l/T4)lz ] is
needed.

To perform the simulation, a forced differential equation
with the proper probabilistic characteristics must be found.

More specifically, the wall acceleration in the simulation

should have a power spectral density that matches that of the

acceleration disturbance found aboard the spacecraft in the
region where the experiment is to be located. Given a mea-

sured power spectral density, the dynamic model, or shaping
filter, that transforms Gaussian white noise to the desired

random process can be found by spectral factor-
ization. 17.26 This dynamic model can then be used in Monte

Carlo simulation (Appendix B).

Application to Microgravity Vibration Isolation

The method described above is now applied to the
microgravity problem. As described in Ref. 7, vibration

aboard spacecraft is essentially of two frequency regions:

0-10- 3 Hz and above 1 Hz. Consequently, the power spectral
density for analysis here is modeled independently in these two

regions. The low frequency portion was not obtained i'rom an

experimental power spectral density since such information is

unavailable. This part of the spectral density, illustrated in

Fig. 8, has therefore been devi_ed for the purpose of this
example to fi_ the known environmental disturbances in this

TIME

Fig. 7 Macroscopic maxima and microscopic maxima.
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frequency range. The spectral density of the analytical model

and byEqs. (ll)and (12)

v v = 0.18836582 x -3 upcrossings/s

#y = 0.13153971 x 101 maxima/s

#y/v x = 6983.2 maxima/upcrossing (25)

Clearly there are many micromaxima per peak of the macro-

scopic process. The two distinct regions of the power spectral

density permit an easy decomposition of the wall processes

y(t), y(t), and y'(t) into macroscopic (low frequency) and
microscopic (high frequency) components. For a problem with

a continuous power spectral density, a smoothing filter as

examined by CrandalP 8 may be used for the decomposition.

The decomposition of the Gaussian signal yields two inde-

pendent random processes z_

E[p(t) d(t)] = 0

ElY(t) d(t)] = 0

El._(t) a'(t)l = 0

with

o_ = 0.16503623 x 101 m

oy = 0.19030049 × 10 -2 m/s

= 0.25429066 x 10 -s m/s 2

Uy

2 02 + 02Oy _-

2 2
= O_ + 0 d (26)

Od = 0.63558716 X 10 -4 m

Od = 0.44024768 x 10 -3 m/s

on= 0.16143511 x 10 -t m/s 2

(27)

The resulting upcrossing and maxima frequencies are

v_,= 0.18351888 x 10 -3 Vd = 0.11024073 × 10 I

itS= 0.21267216 X 10 -3 p.a = 0.58360775 X I0 -m

tty/vy = 0.11588571 x 10' #alva = 5.2939393 (28)

I 75.75 c*4
S,(_02 ) = (c0/0.00116) 4 - 1.99 (w/0.00116) z + 1

0

0 --<w - 0.006283

0.006283 <w< 3.14159

(23)

has most of its power concentrated near orbital frequency

(!.851 × 10 -4 Hz, 90 min orbit) with a power corresponding
to a root-mean-square acceleration of approximately 0.2 #g.

it should be pointed out that the accuracy of the lower bounds

generated by this method depends heavily upon the model

used in this region.

The high frequency region of the power spectral density,
shown in Fig. 9, is from experiments aboard Spacelab. 33 An

analytical model could easily be fitted to the curve shown;

however, this is not necessary for this application. Note that

the method of analysis described previously does not require

that disturbance spectral density occupy two separate regions
as in this case.

The mean square wall process acceleration, velocity, and

position can be found by evaluating Eqs. (8-10) respectively.

This may be done through numerical quadrature yielding,

oy= 0.016143511 m/s z

ox= 0.0019532654m/s

ox= 1.6503623m (24)-

Therefore, the smoothed wall process has an average of

1.158857 maxima per upcrossing (or cycle). Since this is close

to one, the wall process geometry closely resembles Fig. 5 and
the lower bound will be tight. Further note that

oy/oy _ 1.0 vylvj, = 0.97426848 (29)

Thus, the smoothed process retains nearly all of the signal's

amplitude and has on average fewer cycles per unit time. The

apparent drop in "frequency" is due to wall process

smoothing removing spurious microcycles. Therefore, the
decomposition does not alter the original signal's significant

maxima amplitude-time characteristics. Finally, unless the

maximum stroke is of the same magnitude as the microscopic

component, the smoothed wall acceleration y(t) establishes an

upper bound o} on the minimum root-mean-square experi-
ment acceleration.

With the significant maxima distribution found, attention is

now turned to finding the needed first-passage time moment.

The low frequency part of the power spectral density,

Eq. (23), is converted to an equivalent dynamical system via
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spectral factorization yielding the shaping filter

8.6458 I

G_(s) - (s/0.00116) 2 + 0. l(s/0.001160) + 1 (30)

with a bandlimited white noise excitation n(t) described by

Ii 0 -< _0 _< 0.006283
S,, (_) = (31)

0.006283 <

Converting Eq. (30) into two first order differential equations

produces

Yt = Yz (32a)

_2= - 1.3456× 10-6#q- 1.16× 10- 4#'2

+ 1.16338 × lO -5 n (32b)

with initial conditions from Eqs. (15) and (22)

pj(0) =pt 0 = Z + L /2

p:(0) = 0 (33)

The bandlimited white noise process n(t) is approximated
by the sum of a large number of sinusoids at nearly evenly

spaced frequencies between zero and the cutoff frequency via
the method advocated by Shinozuka and Jan. 2r The phases are

random while the amplitudes are determined by the power

spectral density desired. As the number of sinusoids is

increased, the approximated signal approaches n(t). It was

determined through testing that 40 was a sufficient number of

sinusoids for this example.

The differential equations of Eq. (32) are numerically

integrated from the initial conditions until the first crossing. If

the process rises above the initial position P_0' the simulation is
stopped and restarted from the initial condition again. This

insures that the crossing time obtained is the first-passage time

from the maxima. The first-passage time of each simulation is
recorded, and the fourth moment of T- _ is calculated from

the collection of k first-passage times

I k 4

m _ 4(P,0) = _ ,_t Ti- (34)

For an ergodic process, _6 as the sample size k grows, this

statistic approaches E[T-41Pto I. The statistic rn-4(.Pl0) is

found for a range of;', 0 values. The results of the simulations
for the example are shown in Fig. 10. Note that the data are

asymptotic to

[wa/tan-t(-_]4=O.26105x 10-]2 S -4

as P_0 approaches infinity where wd is the damped natural
frequency of Eq. (32). This is because the noise is essentially

negligible when the system's energy is very high. Once the

maximum stroke L is specified, the EI T-41.P,0) yields the
El T-41z I. The data points are cubic spline interpolated to
provide an approximation of the function E(T- 41z) suitable

for numerical integration.

The experiment acceleration mean square lower bound

sought can now be calculated from the significant maximum

probability density and the conditional moment on the

first-passage time by numerical quadrature of Eq. (7) using

Eqs. (16), (19), and (28) along with the interl,olation of the

inverse moment data. This is done for varying values of
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Fig. 11 Lower bound on root-mean-square experiment acceleration
under prolonged exposure to specified vibration environment.

maximum stroke. The lower bound on minimum root-mean-

square experiment acceleration that can be obtained under

prolonged exposure to the example vibration environment
given the stroke constraint is thus computed and is plotted in

Fig. 11 vs maximum stroke. For example, with a maximum

stroke of 1 m, according to the figure the root-mean-square

acceleration of an experiment must be greater than 0.17 jag,

whereas if a 2-m stroke is permitted, this can be reduced to

0.13 _g. Note that the lower bound is non-zero for finite

maximum stroke. This is in contrast to the previously reported
results for harmonic disturbances where the maximum accel-

eration was zero when the maximum stroke was greater than

twice the harmonic amplitude.

Conclusions

In this paper, the microgravity vibration isolation problem
was formulated as a one-dimensional kinematic problem. The

geometry of the stochastic wall trajectories was defined in

terms of their significant extrema. An optimal control solution
for the minimum acceleration return path determined a lower

bound on experiment mean-square acceleration. This bound
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was expressed in terms of the probability density function on

the significant maxima and the conditional fourth moment of

the first passage time inverse. For an example given, the first

of these was found analytically while the second was found via

Monte Carlo simulation. The experiment root-mean-square
acceleration lower bound as a function of available space was

then determined through numerical quadrature.

The method of analysis is quite general and intuitive. The

authors feel that this could be applied to other problems with

stochastic constraints. While such an analysis does not yield a
controller, it does aid in the selection of system parameters

(for example, the maximum stroke).
Lower bound plots of the type developed here may assist

microgravity experiment designers as well as vibration

isolation engineers. The lower bound depicted in plots of this

type could not be achieved by real systems for several reasons.
The levels derived are beneath the theoretical minimums. In

addition, a real system is causal and cannot base its current

control on unknown future disturbances. Also, any real active

control system will have some non-ideal characteristics. The

sensors employed to provide feedback will have some error as

well. In spite of these comments, the authors of this paper are

optimistic about attaining microgravity isolation levels close
to the levels depicted here with an active vibration isolation

system.

and

3z 3z

(3/2)z t2 3zt2
_t) = _ --yr t -

(3/2)z(t_ - 2t:tO

T 3

(I/2)Zt3 (3/2)z1212 (3/2)Z(t_ - 2tflt)
x(t ) = --_ Ts - T3

(!/2)z(21_ - 6r,t_ + 31_t2)

+ Ts (A9)

where T = (tz - t_), the time from significant extrema to zero

crossing, or the first-passage time.

Appendix B: Shaping Filler for Simulation

The power spectral density is first approximated by a
rational polynomial in o_2. (This can be done to any required

accuracy for a given power spectral density by using higher

order polynomials.) This representation of the true power

spectral density is then factored into two terms

S_(_:) = GUw)G( - j_) (B1)

Appendix A: Solution for Optimal Trajectory

The derivation of the optimal trajectory proceeds as
follows. Define the system state variables as

x I = x xl = X2 .i':_= U (AI)

and the equations of motion become

±=Ax +Bu

The cost function is adjoined by the equations of motion and

the final condition, utilizing three Lagrange multipliers. _4 The
result is

J = d_xl/= [u z + Xt(x2 - .i'0 + X2(u -.i'2)1 dt (A3)
"_¢1

The first term G(jo_) has all its poles and zeroes in the left half

plane, whereas the poles and zeroes of the second term,

G(-jto), are the mirror images in the right half plane
Replacing j_o in GU'_) with the complex frequency variable s

yields the transfer function that produces a Gaus-

sian random process with power spectral density S(to) from

Gaussian white noise input:

white noise ._(s)

It is a straightforward process to convert the transfer function,

or shaping filter, with n poles and m zeroes to n + m first

order linear differential equations with white noise input via
the inverse Laplace transform and algebraic manipulation. 17.26

(Note that the derivative of white noise is nonexistent.) For

most applications only the model of the low frequency
component y(t) as a set of differential equations is needed to

generate the E { (I/T 4) Iz I-

which is the general functional for this problem. Define the
Hamiltonian and final condition cost .4 as

H = u 2 + _ktx2 + _kzU G = 4_xtl (A4)

Employing the calculus of variations, the minimization equa-
tions are

OH OH _ OH = 2u + X2 (A5)

with natural boundary conditions

hi/= Gx_: = ¢, X2: = Gx2.r = 0 (A6)

Solving this gives

ht = Co, Xz = - Cot + Cb u = Vz Cot- V2 C_ (A7)

Imposing the prescribed and natural boundary conditions

yields

C0= _s , C,=_s 2 (A8)
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The limitations on vibration Isolation for mlcrogravity space experiments are explored, These limitations result

from the restricted interior space available for vibration isolation and the strokes required to achieve isolation. A

one-degree-of-freedom representation of the experiment spacecraft system is used, and an ideal vibration actuator

is assumed. The wall motion is characterized as sinusoidal at a single frequency. A kinematic representation results,

and the problem becomes one of finding the minimum acceleration trajectory within a pair of moving walls. This

optimal control problem can be solved via the calculus of variations; however, transcendental equations result. To

obtain an analytic solution, the inequality constraints are dropped and initial and final conditions on the trajectory

are added. The resulting control is optimal if the inequality constraints are still satisfied. Analysis yields a simple

condition under which a closed*form solution Is available. A suboptimal solution that always satisfies the inequality

constraints is also presented. This solution is shown to have performance very close to optimal. The minimum

experiment rms acceleration given the spacecraft vibration frequency and amplitude is obtained from the optimal

and suboptimal solutions. Plots are presented, and the limitations on vibration isolation are discussed. These results

demonstrate that isolation from low-frequency vibration requires more interior space than is available for vibration

isolation on manned space orbiters.

Nomenclature

= matrix in state dynamics

= vector in state dynamics

= amplitude of base motion

= coefficients of optimal control Uopt
= force on experiment platform
= Hamiltonian

= cost function

= experiment mass

---stroke (maximum translation of experiment)

= half-period
= time

= boundary constraint exit time
= control acceleration

= state vector, =(xt, x2) r

= position of experiment platform

= velocity of experiment platform

= position of base
= frequency of base motion, Hz

= coefficient of optimal control uopta
= Lagrange multiplier

= frequency of base motion

I. Introduction

HE use of a microgravity environment in space has the
potential for advanced materials science experiments.

Spencer t outlined the goals as i) an understanding of basic

physical phenomena, 2) quantification of limitations and
effects imposed by gravity, and 3) application of knowledge to
Earth- and space-based processes or products. A microgravity
environment can potentially eliminate buoyancy-driven con-

vection, sedimentation, and hydrostatic pressure, and it can
have several other advantages)
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right © 1990 by the American Institute of Aeronautics and Astronau-
tics, Inc. All rights reserved.

*Research Assistant Professor, Department of Mechanical and
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At this point in time, the actual acceleration requirements
for various experiments are not well known, z An assessment
of existing theoretical and experimental data available up to
1985 was carried out in Ref. 3. Results indicate that accelera-

tion levels below 10-fg0 at frequencies below 0.1 Hz are
required by many processes, but the requirements are some-
what relaxed at higher frequencies. Work to better determine
the levels needed is in progress. An example is a twin-crystal
growth experiment to be carried out on spacecraft. 4

An essential part of the development of a microgravity

experiment program is the characterization of the low-acceler-
ation environment aboard manned space orbiters. NASA has

carried out a series of measurements reported at various
conferences, x_ A summary of these data was presented by

Grodsinsky and Brown _ and is repeated in Table 1. Addi-
tional data on the Space Transportation System was pre-
sented in Ref. 8. Similar results have been reported by the
European Space Agency. 9

Vibration levels reported in the aforementioned literature

for spacecraft are significantly higher than allowable for mate-
rials science experiments. In order to achieve accurate and
reproducible results in such experiments, vibration isolation
will be required) Acceleration disturbances in the orbiter
environment cover a wide frequency bandwidth, from dc to

100 Hz. Sources below 10 -J Hz include drag, light pressure
oscillations, tidal effects, and gravity gradients. Above this
frequency, sources include manned activity, thruster firing,
and orbiter flight systems. The frequencies and amplitudes of
these accelerations are summarized in Table I. Low-frequency
(10 -_ to 10 -2 Hz) structural excitations likely to be present
on the space station are not represented in this data. Such
flexible structure modes will contribute significantly to the
vibration environment.

The capability of isolating the experiment from any particu.
lar vibration source is dependent on both frequency and
amplitude. At relatively high frequencies, above about 5 Hz,
passive vibration isolation is normally possible. Examples

include the Hubble space telescope reaction wheel isolation
system J° and viscous dampers for reduced jitter) I One of the
few active vibration isolation systems is reported in Ref. 12.

The volume available in spacecraft for experiments is limited.
Therefore, this introduces an additional constraint on active
iso ation systems.

PRE&EOIN_ PAGE BLANK NOT FILMEB



-q

-[

Table l Microgravity space experiment
acceleration environment (from Ref. 7)

g/go F, Hz Source

Quasisteady or dc acceleration disturbances

10- 7 0- 10- 3 Aerodynamic drag
10 -8 0- 10 -3 Light pressure
10- 7 0 - tO- 3 Gravity gradient

Periodic acceleration disturbances

2 x t0- 2 9 Thruster fire (orbital)
2x 10 -_ 5-20 Crew motion
2 x 10 -4 17 Ku-band antenna

Nonperiodic acceleration disturbances

10 -4 I Thruster fire (attitude)
10 -4 t Crew pushoff

Fig. !

A

l"

1 r

_,=tt,t t
u: v./=

Kinematic representation of the experiment spacecrtft system.

The purpose of this paper is to explore the limitations on

vibration isolation for space experiments, rather than to de-

velop the actual control algorithm. Thus, the ideal vibration

actuator is assumed, and an optimal control is formulated.

The optimal control problem is solved for a sinusoidal excita-
tion to obtain the minimum acceleration trajectory. A subop-

timal solution that gives results close to optimal is also

explored.

II. Kinematic Formulation

For this analysis, a one-dimensional theory is developed.

Clearly, the actual system required will be multidimensional

so this work is preliminary in nature. Consider a one-degree-

of-freedom system, the experiment, as illustrated in Fig. i

with position x(t). It is connected to the spacecraft by umbil-

teals, such as power or fluid lines, and by a vibration isolation
actuator. A similar geometry is discussed by Genkin et al., t_

with stiffness and damping as well as an active vibration

isolation actuator. However, that system has one side fixed to

the ground and the forced mass in motion. Although the

spacecraft actually has a finite mass, it may be considered to

ha',e infinite impedance for this analysis since the spacecraft-

to-experiment weight ratio is very large. Thus, the spacecraft
acts as an external base motion y(t) transmitting forces

through the umbilicals and the actuator.

This representation reduces the problem to a kinematic

one. Onboard the spacecraft, available interior space for the

experiment is limited. The walls around the experiment, which
should not be contacted, constrain the maximum translation

of the experiment, or stroke, to a fixed distance L. The base

motion y(t) imposed on the walls, spaced to permit a stroke of
L, forms the problem constraints. The problem of vibration

isolation/attenuation becomes one of finding the optimal tra-

jectory (minimum acceleration) given the constraint condi-
tions (moving walls).

III. Optimal Control Formulation

The objective is to formulate and solve the optimal control

problem for minimum experiment acceleration trajectory
in time. Let the experiment acceleration be denoted as u

(u = F_/m). Then the cost function J to be minimized is

J= u2 dt (1)

with the constraint

y(t) - L < x{t) < )(t), 0 _ t (2)

for a given base motion )(t).

This problem is examined for harmonic base motion at a
single frequency. Let )<t) have the form

)(t) = A[ ! - cos(cot)] (3)

with the half.period T = n/co. The cost function J now sim-

plifies to

J = u 2 dt (4)

due to the periodicity of the problem. Also, the constraint
becomes

A[! -cos(re�T)| - L < x(t) < A[! -cos(nt/T)] O<t<T

(5)

over the half-period.
This problem may be viewed as finding the optimal path

through sinusoidally oscillating walls, as illustrated in Fig. 2.

If the base travel 2A is smaller than the space L, the minimum

acceleration is zero and the problem trivial. However, if the

base travel 2A is larger than the space available for vibration

isolation L, then the optimization problem has active i".equal-

ity constraints on the state variables. The solution to this

problem may be attempted using the calculus-of-variations
approach by adjoining the Hamiltonian with a second-order

state-variable inequality constraint. This method requires the

satisfaction of two interior boundary conditions (position and
velocity continuity) at the junction points of constrained and

unconstrained path arcs) 4 Because the wall motion is sinu-
soidal, these tangency constraints require the solution of

several transcendental equations. Therefore, no closed-form
solution to the general problem is available. As will be shown,

under a certain condition the problem can be solved to yield

an analytic solution. When this condition does not hold, a
suboptimal solution may be employed. Thus, easy-to-use
equations and plots for determining vibration isolation limits

are made available to microgravity experiment designers.

IV. Analytic Solution

To obtain an analytic solution to the problem, the con-
straints are simplified to the boundary conditions

x(O) = O, x(T) = 2,4 - L > 0

k(0) = 0, ._(T) = 0 (6)

which an optimal solution clearly must satisfy.

Define the system state variables _ as

x, = x, -(i = x2, x2 = u (7)
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and the equations of motion become

Fig. 2

_k= Ax + Bu

The cost function is adjoined by the constraint, Eq. (7),

using two lagrange multipliers. 16 The result is

j;J = [u2 + ).dx_ - ,_) + ).5(u- -_5)1dt (9)

which is the general functional for this problem.
Define the Hamiltonian as

TIME ISECI

Optimal path through harmonic walh.

(Of course, if 2A - L < 0, the optimal trajectory is clearl)

u = 0, ._ = 0, x = 0,) The root-mean-square (rms) acceleration

of this trajectory is

(IT _or ,,n_ .v/_(2AT 5 -L)rms(5?op0 = u2dt} - (15)

The trajectory of Eq. (10) is the solution to the original

problem if the inequality constraints on the platform position,
Eq. (5), are satisfied. Note that Eq. (14) is a linear open-loop
control law.

H = u 5 + ).1 x2 + ).2 u (10)

If we employ the calculus of variations, the minimization
equations are

Solving these gives

OH

X,-- -_=0

dH

_2-- -_-_x+= -).,

0-_u =2u +).5

21 =Co

).2 = --Col + cl

U = ½Col -- ½C,

Imposing the boundary conditions of Eq. (6) yields

co = -24(2A - L)/T 3

c1 = - 12(2A - L)/T 2

- 12(2A - L) 6(2A - L)
-t+

T 3 T 2

-6(2A - L) 15 + 6(2A - L) t
T 3 T 2

-2(2A - L) 13 + 3(2.,I - L) tz
T 3 T 5

2A -L20

(11)

(12)

(13)

(14)

and

u(l)o_,=

_(l) =

X(l) =

V. Conditions on the Analytic Solution

The condition under which Eq. (14) satisfies the inequality

constraints can be obtained by expanding Eq. (5) as a Taylor
series

[.V(l)-- ,4 l - cos

A{nt_ 5 A (T)4+"" (16)= iLT/- -_

If we combine Eqs. (5), (14), and (16), x(t) < y(t) becomes

L)(t12-2(2A\_/-L)L?)/t '\3 A715""_ _kT) --_- L'T)"l-/'l \2 An'It \4 ...
3(2A-

(17)

For small t/T,

3(2A - L) _; An2/2

which yields the condition

L > {2- (a2/6)],,I

The symmetry of the optimal trajectory and inequality con-

straints guarantees that this is also the sufficient condition for

Eq. (14) to satisfy the inequality constraint near the final
time.

VI. Suboptimal Solution

A suboptimal solution to Eq. (4) that automatically sa-
tisfies the inequality constraints of Eq. (5) is

x,_b(t) = (A - L/2)[! - cos(el�T)], 2A - L > 0 (19)

which has control history

u,_ b = (A - L/2)(n2/T 5) cos(nt/T) (20)



andrmsacceleration

rms(S,.,,)= (x_/4).2[(2A - L)/7'] (21)

When Eqs. (15) and (21) are compared, it is clear that the
suboptimal solution is only slightly inferior to the optimal

[rms(/_op,)/rms(._,,b)] = (4x/6/n 2) _ 0.9927 (22)

A comparison of the optimal and suboptimal accelerations

and trajectories when condition (18) holds is shown in Fig. 3.
The optimal solution when condition (18) is invalid is a

combination of a linear control law and wall following trajec-
tories,

f (An2/T ) cos(nt/T), 0 < t < t*
uopt2(t) = a - 2at/T, " t* < t < T- t* (23)

(An2/T 2) cos(nt/T), T -- t* < t < T

IO'- O0 11"20 0.411 O.&Q 0.80 I 00

TIME/I"
Fig. 3 Comparison of optimal and suboptimal acceleration historlex
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Fig. 4 Minimum experiment acceleration given disturbance frequency,
stroke = 5 cm.

where t* and a are determined by the solution of several

transcendental equations expressing position and velocity

continuity at t*. It is clear that the rms of this optimal

solution must be bounded between that of the suboptimal and
the optimal with the inequality constraints of (5) dropped

3.4641 (2A - L)
T2 < rmS(Uop,2) < 3.4895 (2A - L)T2 (24)

The suboptimal solution can obviously be employed as an

excellent approximation to the optimal, Eq. (23), when condi-
tion (18) is not satisfied.

VII. Limitations on Isolation

The primary purpose of this paper is to determine theoreti-
cal limits to vibration isolation. Although a dimensionless

plot could have been produced, it was felt that a few typical
dimensional plots would be of more use to designers of

microgravity materials science experiments. Figures 4-6

present the curves of the minimum experiment acceleration vs
base acceleration at constant frequencies for stroke limits of
5, 10, and 20 cm, respectively.

The horizontal axis gives the rms base acceleration calcu-
lated from

rms(y')= (x/5/2)_,2a (25)

The vertical axis is the minimum experiment acceleration

from Eq. (15) when Eq. (18) holds and Eq. (21) when it
does not.

In Figs. 4-6, the minimum experiment rms acceleration at

any given frequency is zero (isolation) until the base displace-

ment amplitude equals one-half the maximum stroke possible.

The minimum experiment rms then quickly rises with in-

creases in base acceleration and asymptotically approaches
the zero-vibration-reduction line, at 45 deg. Along this line,

the base and experiment act as if they were rigidly coupled
together and have the same acceleration.

The primary limitation is the length of stroke allowed

between the experiment and the base. As an example calcula-

tion, consider an rms base acceleration of 1 x 10-3g0 at a
frequency of 0.06 Hz. The base travel is given by

O

2,4 = 2v,_lrms(._,')/oj:q

0'0

g

_a
w

<_'2

w

'o

Fig. 5
stroke

(26)
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which has the numerical value of 19.5 cm for this example.

For a stroke L = 5 ca, Fig. 4 shows that the experiment
acceleration will be at least 7 x 10 -4 go- When the stroke is
increased to L = 10 ca, Fig. 5 gives a value of 4.5 x 10 -_ go.

The last case is a stroke of L = 20 can. Figure 6 indicates
that the minimum acceleration is zero. In this case, L > 2A so
the stroke is large enough to accommodate the full sinusoidal
motion without wall contact.

As an alternative to the plots, Eqs. (15), (18), (21), and (25)
may be used directly. These can be simplified for this

purpose to

rms(._)

rms(.#)

2\

4"v/6 - 2"A _ 2A-_--! , I- ) <l

L
0, 1<--

2A

(27)

with

VIII. Conclusions

This paper has developed a kinematic formulation for the

microgravity space experiment problem in one dimension.

Further, two solutions, one optimal and the other suboptimal

but very close to optimal, have been obtained. These permit

plots of vibration attenuation for given levels of available
space. For the sinusoidal oscillation assumed here, the experi-

ment could be completely isolated if sufficient space were

available. Unfortunately, the low-frequency motions (0-

0.01 Hz) would require motions with a length much larger

than possible aboard spacecraft.

Plots of the type developed here are intended to assist
microgravity experiment designers as well as vibration isola-

tion engineers. These plots represent the ideal vibration isola-

tor. Real systems will not be able to attain the ideal for

several reasons. The actual motion will have several frequency

components as well as a random component. The random

component alone will ensure that the full space L cannot be

employed. Some safety space will have to be allocated to

prevent occasional wall contact. Any real active control sys-
tem will have some nonidcai characteristics. The sensors

employed in the active control feedback loop will have some

errors as well. The authors of this paper are aware that the

development of a very low-frequency accelerometer is

difficult. In spite of this, we are optimistic about the levels of
vibration isolation discussed here. It seems reasonable to

believe that approximately 75% of ideal isolation is possible

with an actual control system and actuator.
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2.1

ACTUATOR DEVELOPMENT

I

5

N93- 27595

Introduction

The University examined the design of actuators for both SDOF and MDOF active

microgravity isolation systems. For SDOF systems, two actuators were considered: a special

large gap magnetic actuator and a large stroke Lorentz actuator. The magnetic actuator was

viewed to be of greater difficulty than the Lorentz actuator with little compelling technical

advantage and was dropped from consideration. A Lorentz actuator was designed and built for

the SDOF test rig using magnetic circuit and finite element analyses. This design and some

experimental results are discussed below.

The University also examined the design of actuators for MDOF isolation systems. This

includes the design of an integrated 1 cm gap 6-DOF noncontacting magnetic suspension

system and of a "coarse" follower which permits the practical extension of magnetic suspension

to large strokes. The proposed "coarse" actuator was a closed kinematic chain manipulator

known as a Stewart Platform. The integration of the two isolation systems together, the

isolation tasks assigned to each, and possible control architectures were also explored. The

results of this research are examined in Section 3.

2.2 .Large-Stroke Lorentz Actuator and Test Results

A compact large--stroke Lorentz actuator was designed, built, and tested at

University of Virginia The requirements for the laboratory prototype were a total strok,

two inches and enough force capability to isolate a mass of 75 lbs. connected by an umbi

(air dashpot) to a source generating very low frequency vibrations. Force linearity with cu

and independent of position were also desirable. Moreover, in view of the ultimate

deployment in space, such a device had to be compact and lightweight. Low

consumption and low heat generation during operation were also important. A desi

carried out using a simple computer program based on magnetic circuit analysis. The

design required a 3.2 inch diameter ring magnet of very high maximum energy pr
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mega---Gauss--Oersted).This designwasnot only large and heavy, but could not be built from

a singlepiece since magnet manufacturersdo not make sizeslarger than 2 inches. The cost

and difficulty of assembly ruled out an actuator using multiple magnet segments. It therefore

became necessary to design the Lorentz actuator using a smaller core gap than is conventionally

used. Usually this gap is large to reduce magnetic flux leakage across it so as to yield an

actuator that will produce a force independent of coil position. It was hypothesized that this

leakage could be substantially reduced by saturating the actuator's core. This could only be

verified, short of building a prototype, via finite element analysis. A commercially available

finite element analysis package, MAGGIE,

Figure 1 : Large--stroke Lorentz actuator
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was used to "test" a large number of designs. The final actuator, shown in Figure 1, has an

outer diameter of 1.95 inches and a 4 inch length. This actuator has the following features [1] :

* Long Stroke: The actuator has two inches of stroke.

* Position Independence: Over the entire stroke, the actuator's gain is almost

independent of position. For a constant coil current, this means that the actuator

force is the same irrespective of the axial position of the coil. This is achieved by the

design since the maximum flux density across the core gap is only 7% of the maximum

flux density across the pole face gap.

* Current Linearity: The average flux density in the effective air gap remains constant

with variations in the coil current between the upper and lower limits. This is achieved

through the large reluctance of the permanent magnet in the electromagnetic flux circuit

and the saturation of the core.

* Force: A maximum force of 1.50 lbs is produced by this actuator with a coil current of

2.5 A.

* Materials: The permanent magnet is neodymium iron boron, which has a very high

maximum energy density product of 35 MGOe. The circuit material is a high

permeability nickel-iron alloy that saturates at 1.50 Tesla. These materials permit a

compact design.

The experimental results have confirmed the soundness of the design approach [1].

Figure 2a shows the actuator force plotted versus position for a number of values of coil

current. Note that the actuator's force is fairly independent of the coil position over the

actuator's operating range (0.5 to 2.5 inches). Note also that the actual forces are larger than

the predicted forces, but still within 20%. Figure 2b shows the same data in terms of actuator

force plotted versus coil current for different positions. As shown in the figure, the actuator has

a high degree of linearity with respect to current. Note that the actuator gain (slope of the line

in Figure 2b) is fairly independent of coil position and is approximately 0.6 lbf/amp.
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3. MULTIPLE DEGREE OF FREEDOM ACTUATOR DESIGN

3.1 Introduction

The University of Virginia also examined the design of multiple-degree---of-freedom

actuators for microgravity vibration isolation. The fundamental constraint on isolation

performance to be considered during actuator design is the available working envelope [2,3].

The implications of this constraint on active isolation were examined by the University in two

journal publications [2,3].

Figure 3 shows the relationship between the envelope (peak-to-peak displacement and

frequency for several sustainable RMS acceleration levels [4]. The graph is for a
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Figure 3: Peak-to-peak displacement vs. frequency

one---degree-of-freedom case and assumes sinusoidal vibrations, but the relationships are

acceptable for order of magnitude estimates even if these assumptions are relaxed. No

definitive specification of the required isolation levels or frequency range exists. The proposed

US Space Station usable specification is also shown in Figure 3. It is claimed that vibrations

below this curve will not adversely affect microgravity experiments. The design examined in
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this section is an active isolation system with a "reasonable" envelopeof 4 inchesof travel

and a sustained1 ug RMS residual acceleration. It can be seenfrom the figure that this will

offer isolation down to 0.002 Hz. The amplitude to which vibrations can be attenuated is

constrained only by controller design and available instrumentation. Operation at lower

frequencies,however, requires a larger envelope, which becomesprohibitive in terms of

available spacecraftspace. Another specification for the six--degree--of-freedom system

considered is a rotational rangeof 40degrees.

A redundant coarse-fineschemewith magnetic suspension waschosen. This design is

particularly attractive for microgravity applications since it allows the use of magnetic

suspension while overcoming range--of-motion limitations. The design uses a Stewart

platform for the coarse stage and a novel magnetic bearing for the fine stage [4,5]. The

approximate regions of activity in the frequency--displacement plane of these two devices are

also shown in Figure 3. Both stages act to attenuate spacecraft vibrations, effectively

reducing vibration amplitudes below their active regions on the displacement vs. frequency

plane. As an example, it can be seen in the figure that a vibration of the spacecraft with 10

inches of displacement at a frequency of 1 Hz falls outside the active region and could only be

partially attenuated. It should be noted that such a large vibration is unlikely. If the

displacement was only 1 inch, however, the coarse stage would absorb all of it except about

0.005 inches, and the remainder would be reduced down to the micro-g level by the fine stage.

The combination of the Stewart platform and a magnetic bearing allows continuous

isolation at frequencies above 0.002 Hz, and a compact, reliable package suitable for the

application. These choices and some preliminary design concepts are discussed below in detail

after a survey of other candidate designs.

3.2 Survey of Published Designs

Several designs for 6 DOF levitation are discussed in the literature. While these designs

do not have the envelope of the proposed coarse-fine design, they might be suitable if a
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coarse stageis not required. They also deserveexamination as alternative designsfor the fine

stage. A comparisonof the specificationsfor thesedesignsis givenin Table 1.

Honeywell

N. Vales

NASA

Group Trans. Rot.

5 mm ±1.6 °

±5 mm <±.2 °

±4 mm ±3 ° c

SatCon ±I0 mm ±8 ° c

IBM ±5 mm ±4 °

Toshiba ±2 mm ±1.5 °

a Requirement, not limitation
b

Includes experiment package

c Estimated by authors

Force Envelope

43 N

.04 Na

445 N

4N

32 N

20 Nc

27x34xS0cm

100xl00xl00cm b

30x30xlScm c

40x40x12cm c

25x25x15cm c

25x25x20cm

_ass

36kg

?

?

4.9kg

?

8kg

Actuator Sensor

Mag. Brng.

Lorentz

Mag. Brng.

Lorentz

Lorentz

Mag. Brng.

Eddy _ Flux

Capacitive

Eddy

Eddy

Optical

Eddy

Table 1: Comparison of Published Designs

Four designs specifically for microgravity isolation have been published. Honeywell has

a well-developed system called FEAMIS [6] with which they have demonstrated impressive

isolation performance. The system is designed for the Space Shuttle experiment configuration.

The University College of North Wales also has a well-developed system [7] designed for the

European Space Agency experiment configuration. NASA [8] has a well-tested laboratory

system and has done testing in a weightless environment aboard an aircraft in a parabolic

trajectory. They also have demonstrated impressive isolation performance for a feedforward

control system. SatCon [9] also has a laboratory magnetic suspension system.

Two actuator designs were developed for different applications, but they are mentioned

here because they are similar and could be easily adapted to the isolation application. IBM

[10] has a laboratory levitated robot "wrist" which enhances robot accuracy and performance.
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Toshiba [11] has a satellite antennapointing system which is fully developed. Both devices

havedemonstratedpositional accuracieson the order of 1 #m.

Isolation of vibrations with large amplitudes -typically occurring at lcJwfrequencies-

requires a large translational range. SatCon's system has the largest range, but there is a

significant tradeoff with the device'sforcecapability. A coarse-fine approachwould allow both

a large range, provided by the coarsestage, and a high force capability, since the levitation

gaps are small. There is no available data on the rotational range requirements of the

application. Isolation with an umbilical disturbance may require a high force capability, as is

offered by the systemsfrom Honeywell, NASA, IBM, and Toshiba. Volumearid weight should

beminimized in any spacecraft. SatCon's, IBM's, and Toshiba's systemsoffer advantagesin

envelopevolumeand weight.

The choiceof the actuator technologybetweenLorentz force and magnetic bearingsfor

MDOFisolation systems is not a clear one. Lorentz actuators offer lincarity, simplicity,

open loop neutral stability, and compactness. Magnetic bearingsoffer higher force capability

and lower power consumption,particularly if gapsareminimized.

Four position sensortechnologiesoffer promising performance. Eddy current position

probes are simple and robust, but bulky and heavy for large gaps. Capacitive sensorsare

simple and lightweight, but canbe noisy in unconstrainedenvironments. Optical lateral effect

photo-diodes are compactand quiet, but they require substantial supporting electronics. Hall

effect flux sensorscan be used with magnetic bearing designsboth to linearize the control

problemand to measureposition.

3.3 Coarse Stage_

The Stewart platform is a six degree---of-freedom parallel manipulator which has been

used extensively in aircraft cockpit simulator applications. Figure 4 shows the mechanism in

the proposed configuration [4]. Six linear actuators (legs) connect a base (bottom) to a

platform (top). The base would be mounted in the spacecraft and move with it, while the
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platform would track an inertial referenceframe. Stepper motor driven ball lead---screwsare

proposedasactuators.

Figure 4: Coarsestageisolation actuator

This mechanismwas chosenover other candidatessuchas a carriage/gimbal assembly,

or a serial linkage mechanism, because it has the following features:

* Inherent rigidity: The parallel connection of the actuators gives the mechanism rigidity

on the order of the extensional rigidity of the actuators. For the proposed actuators, this

will allow controller design to ignore the dynamics of the mechanism. The effects of

"umbilical" connection to the platform will also be negligible.

* Determinate inverse kinematics: The actuator lengths required to achieve a prescribed

orientation are found directly from a coordinate transformation from the base to the

platform frame. This is seldom the case for a serial linkage. This will also simplify

control.
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Compactness: The configuration proposed here places the fine stage on top of the

platform for conveniencein testing. A fully developedimplementation could locate the

fine system and microgravity experiment in the spacebetween the base and platform,

resulting in a compactpackage.

The Stewart platform has somedisadvantagesthat must be considered. It is nonlinear in its

responseto actuator lengths, its general direct kinematics have not been discoveredin closed

form, and it hassingularities in its operational space. The first two problemscan be overcome

with digital controls. The singularities, which arepoints or loci wherethe mechanismgainsa

degreeof freedomand the actuatorscan losecontrol of the platform, must be addressedby the

design.

A simulation code has been written to allow exploration of the design alternatives.

Results indicate that our specification (4 inches translation, 40 degreesrotation) will be

achievablewith actuators 10.5incheslong in the retracted position, and with 9 inchesof stroke.

The simulations have confirmed that singularities are safely outside the working envelope.

Commercialactuators with the required range, load capacity, speedand accelerationhave been

identified.

3.4 Fine Stage

The magnetic bearing proposed has two parts: a stator which is attached to the Stewart

platform, and a surrounding "flotor" to which the experiment is attached. The proposed stator

[5] is illustrated in Figure 5. It has twelve pole pieces and coils arranged around the surface of

a cube. The cube and pole pieces are ferromagnetic. Each pair of pole pieces and the region of

the cube to which they are attached comprise a typical "horseshoe" electromagnet causing an

attractive force toward the nearby flotor. Magnetic flux through the center of the cube causes

an imbalance in the flux levels of a pair of pole pieces, resulting in a net torque on the flotor.
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Figure 5: Fine stageisolation stator

Figure 6: Fine stageisolation flotor
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In the proposed design differential Hall effect sensorsare located in the base of each pole

pieceto measurethe local flux. All electrical connectionswill be to the stator.

The flotor concept is illustrated in Figure 6. Three ferromagnetic bands are rigidly

attached to each other, but form independent flux paths. The bands are thicker in the region

near the pole pieces to avoid saturation. Flux which passes through the center of the cube is

returned through the remaining portions of the bands.

Four mounting posts are attached to corners of the cube, and pass through clearances in

These posts could carry cooling fluid to be circulated through the stator if it isthe flotor.

required.

This configuration was chosen over other suspension approaches such as Lorentz

actuators or magnetic actuators located on the periphery of the experiment package because it

has the following advantages:

* Compactness: The high force capability of the magnetic bearing relative to a Lorentz

actuator of similar size and power consumption suits the application. Testing in earth

gravity will be facilitated, and suspension during launch to protect sensitive

instrumentation may be feasible. Also, the rigid structure required to mount actuators

around the periphery is avoided.

* Force/torque balance and rotational range: Actuators capable of the required forces

mounted on the periphery of the experiment are capable of torques far greater than is

required, and they limit the rotational range of the experiment. The proposed design

approach brings the relative force/torque magnitudes closer to the requirement, and

allows substantial rotational range.

* Integral sensor capability: Compact semiconductor magnetic flux sensors (Hall effect or

magneto-resistive) can be utilized both to stabilize the system and to infer relative

position. No elegant integrated approach is known for Lorentz actuators.
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3.5 Predicted Performance

The specific design examined at the University has a center cube of 2 in. on a side, pole

faces of 1 x .5 in., and pole length of 2 in. Maximum current is determined by allowing a coil

current density of 5000 amp/in2 which is known to be conservative from previous designs. The

gap in the centered position was chosen to be .125 in. plus an allowance of .030 in. for inclusion

of flux sensors and a protective layer on the inside of the bands. The resulting performance of

the design is presented in Table 2. The 53 N force is a continuous worst case, with the stator

moved away from the flotor in the direction of the force. The continuous force capability in the

centered position is 175 N. Intermittent force capability is limited only by the current

capability of the amplifiers, and the saturation limit of the magnetic material used. Using

Vanadium Permandur with this design would enable 1000 N force before saturation. Of

the 4.5 kg mass, the flotor comprises only 1.2 kg.

Trans. Rot. Force Envelope Mass

+3.2 mm +7 ° 53 N 15xlSx15 cm 4.5 kg

Table 2: Specification of UVA Design

When compared with the designs presented in Table 1, the UVA design has several

advantages. The envelope is substantially smaller than any of the previous designs, while the

performance is similar. In addition to saving space, this compactness allows the flotor to be

naturally rigid, and thus avoids control problems with structural dynamics. The design is

lighter than other designs for which data were available [5,6].
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4. CONTROL SYSTEM DESIGN ISSUES

4.1 Int roduct ion

The control issues of active microgravity vibration isolation were another area of

investigation at the University. The thrust of this research has been the design of

feedback/feedforward controllers using modern control synthesis. As part of this investigation

we also examined passive vibration isolation analogies. In addition, a control architecture for

the six---degree-of-freedom actuator discussed in the last section was proposed.

Active isolation systems for microgravity and pointing applications have been designed

and constructed by many investigators. These systems generally use conventional PD control

of a noncontacting actuator, either Lorentz or electromagnetic, to achieve low frequency

disturbance attenuation. While an actual microgravity experiment may require umbilicals, the

isolation systems designed and tested so far cannot provide isolation for such an

experiment. These systems achieve their performance by the very low stiffness made possible

by low gain feedback of the relative position of the experiment to the experiment rack.

Without an umbilical, this stiffness may be set by the designer at will. However, when an

umbilical is present, the umbilical stiffness presents a lower bound on achievable stiffness unless

the feedback loop is used to introduce a negative stiffness. The University has concentrated its

work on the design of control systems for the generic (i.e. with umbilical) microgravity isolation

problem. The University has set the following specifications for an active microgravity

isolation system [12]:

(1) Unity transmissibility from D.C. to 0.001 Hz so as to prevent the experiment from

impacting its enclosure's walls.

(2) At least 40 dB attenuation above 0.1 Hz.

(3) Both stability and performance robustness with respect to changes in umbilical

experiment properties, non-collocation or misalignment of sensors and actuators,

center--of-mass uncertainties, and unmodeled cross coupling between the degrees of

freedom.
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Robustnessrefers to the ability of the control system to perform satisfactorily when the

true plant varies from the nominal plant. Performance requirements of the type (2) for

rotational degreesof freedom have not yet been specifiedby NASAor microgravity users, to

our knowledge.

4.2 Passive Isolation: An Analogy

The design of an active vibration isolation system for microgravity space experiments

was examined from an analogy to passive isolators [12]. It should be noted that the primary

reason for pursuing an active rather than a passive system is not the increased flexibility in

loop shaping accompanying active control, but the limitations of passive isolation systems. The

stiffness of the umbilical precludes achieving a soft enough support so as to meet the isolation

requirements for indirect (transmitted through the umbilical) disturbances. Also, a passive

isolation system cannot isolate the payload from both indirect and direct (onboard the

experiment) disturbances. An active system allows these limitations to be overcome. For

example, an active system permits the insertion of a negative stiffness spring in parallel with

the umbilical. Note, however, that this approach, i.e. lowering the stiffness, requires the near

cancellation of the umbilical's stiffness with that introduced via feedback. If the negative

stiffness exceeds that of the umbilical, the equivalent stiffness of the system will be negative

and the system will be unstable. It is not surprising then that the introduction of negative

stiffness via the controller has no robustness whatsoever. A focus on equivalent stiffness in

isolation system design thus leads to control systems which sacrifice robustness for

performance. In addition, a design which achieves isolation through lowering the system

stiffness cannot attenuate direct disturbances over the same frequency band.

From a vibration engineering viewpoint, an alternative means of achieving rejection of

disturbances is to fasten the experiment rigidly to an inertial structure. While there is no such

structure in space, it is possible to achieve this effect by high gain feedback on inertial

experiment position. This inertial position feedback acts like a very stiff spring tying the
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experiment to inertial space. While sucha controller may meet the 0.1 Hz 40 d13specification,

it will not satisfy the specification on unit transmissibility [12]. If an iaertial position

feedforward loop is added, this problem can be eliminated. However, this method would be

difficult to use effectively for multiple--degree-of-freedom isolation.

Another method of fastening the experiment to inertial space examined by the

University is the useof inertial damping via feedback. By feedingback the inertial experiment

velocity with a high gain it was shown for an exampleproblem that it is almost possible to

achieve both the 40 dB and the unity transmissibility specifications without resorting to

feedforward. Unfortunately, the roll--off rate is approximately 20 dB/decade, so that both

specificationscannot be simultaneouslyachieved [12].

Another passive analogy examined was the lowering of the natural frequency of the

umbilical by increasingthe experiment mass. An increasedexperiment masswould attenuate

direct disturbances as well as those transmitted through the umbilical. In addition, at

frequenciesbelow the natural frequency of the umbilical-mass system, the isolation system

would have unity transmissibility. Of course, for space applications any additional mass is

very costly. To lower the natural frequency by an order of magnitude would require increasing

the experiment mass by a factor of one hundred. Clearly, it is not practical to accomplish

increased isolation through the addition of real mass. However, it is possible to increase the

effective mass of the system through feedback [12].

To summarize, the passive isolation analogies examined yield some insight but they fall

short as design approaches on three counts: (1) they do not have flexibility to shape the

response so as to achieve the performance requirements, (2) they cannot be easily generalized to

multi-degree---of-freedom problems, and (3) they completely ignore the robustness problems

inherent with active control systems.

4.3 Classical Control Design

A one--dimensional isolation problem, shown in Figure 7, was examined using a classical

controls loop---shaping approach, to gain insight into controller design and limitations. System
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Figure 7: One--dimensional isolation problem

parameters were chosen to be representative values which yielded a low natural frequency

(k/m = 0.1, u_n # 0.05 Hz [0.316 rad/sec]), and damping was assumed light (¢ = 0.1). In the

following discussion the variables d, x, and u represent experiment rack position, payload

position, and control force, respectively; and it is assumed that the only available measurement

is payload acceleration. The problem is to design a feedback controller, satisfying the following

specifications:

1.

.

)

Above 0.1 Hz the payload acceleration _(t) should be 40 dB below the spacecraft

acceleration _(t).

Below 0.001 Hz the payload vibration x(t) should track the spacecraft vibration d(t) to

within 10 percent, in order to prevent collision of the payload with the wails of the

experiment rack surrounding it.

The payload should track perfectly the DC motion of the spacecraft, where no relative

motion can be tolerated.
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4. The loop gain of the system (plant and controller) should be less than 0.1 above 200 Hz,

to avoid controller excitation of spacecraft- or payload flexible modes.

5. The payload acceleration should be less than or equal to 1.1 times the spacecraft

acceleration at all frequencies.

6. Large phase margins should be attempted at all crossover frequencies.

The system equation of motion is

m_ + c£ + kx =ccl + kd-u

and the system transfer functions are

s X(s) :
cs+k

ms2+cs+k
s D(s)

_s 2

+ ims2+cs+k

with a system block diagram as shown in Figure 8. R(s) represents the input disturbance (rack

acceleration, Laplace domain), C(s) represents the payload acceleration, Hl(S ) represents the

2
--S

controller, and U(s) represents the control force. G(s) and c s +k G(s) are the two plant

transfer functions, and It(s) is defined as indicated in Figure 8 for convenience.

s_Ols}

alsl _j_
t-

-LH

G[s|

_j cs+k

II ms_+cs+k

cs+k Ht[s]

HIsI

eX[+l >
C[s)

Figure 8: One-dimensional isolation system block diagram
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The first five specificationscannow be re--expressed, respectively, in the following form:

,

2. 0.9<

< 0.01 above 0.1Hz (0.628 rad/sec).

C(s) <l.lbelow0.001Hz (6.28.10 -3rad/sec).

. lim C(s) l : 1.

R- I

. [H(s) G(s)[ < 0.1 above 200 Hz (1256 rad/sec).

. t(s) I < 1.1 for all frequencies.

R-( l

In order to use the classical approach efficiently, the above specifications must be

reduced to loop--gain form. This reduction yields, respectively, the following:

1. G I < 0.01 above 0.628 rad/sec, which in turn requires roughly that IHI > 22

I+HG I

.

(i.e., greater than 100/G1) at that point.

The second specification, 0.9 <1 G

I 1 +HG

equivalent (since I GI

6.28.10 -3 rad/sec.

< 1.1 below 6.28-10 -3 rad/sec, is roughly

1 below Wn) to the requirement that IHGI < 0.1 below

.

.

5.

lira IHGI = 0.
s-*0

]HG] < 0.1 above 1256 rad/sec (same form as before).

]HG ] > 7 in the vicinity of o2n (where [G ] -- 6.5) to reduce the transmissibility to about

unity in that region.

Standard loopshaping methods can now be used in a straightforward manner. See

Figure 9 for asymptotic Bode---_ plots of the specifications and of G(s); and for "first-pass"

plots of the loop gain "L(s)" [i.e., H(s)G(s)] and of the controller Hl(S ).
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Figure 9: Asymptotic Bode---a plot of plant G(s) and "first-pass" loop gain L(s)

The controller developed first led to a transmissibility resonance at wn (not shown) so a filter of

form (s+ 0.316) 2
s 2 + 0.1 was added, resulting in the following controller:

nl(s ) _1.2.103 (s + 0.25)(s + 12)(_ + 0.316)2(2 + 0.063 s + 0.1)
(_ + 0.009) (_ + 1)2 (s + 4)2 (2 + 0.1)

Figures 10a,b,c represent loop gain, controller, and transmissibility plots, respectively. The

control meets all specifications except for the goal of no more than a transmissibility of 1.1 at

all frequencies; and this specification is almost met. The two phase margins associated with the

above controller are 59o and 880, respectively.
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.

5.

,

7.

°

.

From the above analysis the following conclusions can be drawn:

The requirement that ]C be less than some fraction 82 above some frequency w2 [spec

#1] means that the open loop gain L(s) [i.e., H(s)G(s)] must be greater in magnitude

1 ]G(s)[ above w2. This means that there is a tradeoff between f12 and PM 1. Thethan _2

smaller 82 is, the smaller PM 1 can be. That is, the better the disturbance rejection

above oJ2, the lower the achievable phase margin PMI:

82 1 # PM 1 1. (Lowering 82 will also tend to reduce PM2, but not as directly.)

Raising _2 will improve PM 1 but degrade PM2:

w2T#PM1 T, PM21

The requirement to keep [L(s)[ below /_3 above w3 [spec #4] (so as to avoid exciting

higher modes) has a cost in terms of PM 2 : f131#PM21.

Raising w3 raises PM2: w3 T_PM2T.

The requirement to hold IC[ within some fraction _1 of unit transmissibility below

1

some frequency w1 [spec # 2] means that IL(s)[ must be less than _1 [G(s) l below w 1.

There is, then, a tradeoff between 81 and PMI: 811_PMll. (Changing fll does not

significantly affect PM2. )

Lowering w1 will improve PMI: Wll=_PM1T.

Lowering the natural frequency Wn eases the difficulty in obtaining adequate PM 1 by

lowering the constraint at _2 (see Figure 9) at _2: Wn 1=> PM1T. This means that

reducing the physical umbilical stiffness or increasing the physical payload mass will

make for an easier control problem.

The problem can be simplified, and both PM 1 and PM 2 can be it_creased, if the

umbilical is damped such that the resonance near wn is small. (Refer to spec #5, p.

23.)

The controller need not have zero gain at DC to be acceptable, as long as

lim S2Hl(S)- = 0.
s-_ 0

-1, 0, or greater.

The controller may have a low frequency asymptote with slope

ORIGIN_L PAOE tS

OF POOR QUALITY
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Although the classical approach is not readily extendable to the MIMO problem, it does

provide some useful insights for informing the extended H 2 synthesis approach that we will

examine in Section 5. Weighting _(t) more heavily above w2 is analogous to lowering/?2 (see

conclusion #1 above), so that better disturbance rejection is achieved at the expense of phase

margin (esp. PM1). Weighting the control u(t) more heavily at higher frequencies corresponds

to trying to reduce 33 , so that a reduction in controller bandwidth is purchased at the expense

of phase margin (PM2) (see conclusion #3). At the lower end of the frequency spectrum,

increased weighting of relative displacement (x-d), reduced weighting of absolute acceleration

(_), or increased weighting of the control (u) each corresponds to attempting to lower/31' at the

cost of reducing PM 1 (see conclusion #5). Since an acceptable controller can have large, even

infinite, DC gain (see conclusion #9) it is not necessary to weight u(t) highly at low

frequencies. In fact for phase margin considerations (PM1) it may be best to have "cheap"

control at low frequencies, as previously noted (see conclusion #5). Unity transmissibility,

then, could be "requested" at low frequencies by a relatively high low-frequency weighting of

relative displacement.

4.4 Extending to the Multiple Degree---of-Freedom Problem

The University has extensively examined the design of multiple-input-multiple--vutput

(MIMO) controllers for the multiple---degree---of-freedom active isolation problem. This work

will be examined in detail in the next section. Here, we will introduce some of the problems of

extending single---input-single--output (SISO) methods to MIMO problems by examining a

simple multiple-degree---of-freedom benchmark problem [12], shown in Figure 11.

This problem illustrates how controller design via decoupIing an isolation problem into its open

loop modes, designing controllers for each mode, and recoupling back into the actuators, will

often result in poor robustness due to unmodeled cross---couplings. This method of design,

converting a MIMO control problem to a serics of SISO problems, is often practiced. The

example system is composed of an _solated platform (width 0.5 m and height 0..'2 m, depth

OF PC:)_ i_.JAi, iT'y
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Figure 11: Simple multiple-degree--of-freedom benchmark isolation problem

unspecified), two accelerometers, two actuators, an umbilical, and a translating base. The

platform may translate vertically or rotate about its center---of-mass. The actuators and

accelerometers are positioned a distance of q = 0.2 m symmetrically about the assumed

center---of-mass location. An umbilical of stiffness k (no damping) runs between this location

and the base. The platform has mass m and inertia I. The equations of motion for the

platform's translation x(t) and rotation 0(t) are

m_: + kAO + kx = fl + f2 + dl

I'0 + kA90 + kAx = (q + A)f2 - (q - A)ft + d2

where dl and d_ are the disturbances, and A is the error in the assumed center of mass. The
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accelerometerreadings are

y, = -_- (q- A)'_

y_ = _- (q- _)'_

The nominal system (A = 0) can be decoupled in terms of the degrees of freedom by the change

in variables

F = fl + f:

M = q(f2 - fl)

zl = (Yl + y2)/2

z2 = q(y2 - yl)/2

which are nominally the translational force, the moment, the translational acceleration, and the

angular acceleration for the platform, respectively. The nominal transfer functions for the

system are then

Zl(S)= [ms2 +kS2 ](F(s)+Dl(S))

1 ](M(s)+ D2(s))Z_(s)= T

r

For translational motion, the natural frequency of the platform is _k/m . The rotational

motion of the platform is free since the umbilical is attached to the center---of-mass. To

compensate the nominal system, feedback can be designed for each mode of the system

separately, since the system is decoupled. Translational acceleration and velocity feedback are

first used to add effective mass and damping.

c ] Z_(s).F(s) = - a + s
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This lowers the natural frequency of translational motion_ yielding the closed loop transfer

function

Zl(s)= [( s2 ]Dl(s).m + a)s 2 + cs + k

Next, angular deflection feedback is used to constrain low frequency rotational motion and

some damping is provided.

yielding

[nb]M(S)=- ;+_ Z2(s)

s 2 ] D2(s)Z_(s)= Is + n s + b

where the control system values are in effective units. A control system was designed to lower

the natural frequency of translational motion from 0.056 to 0.006 Hz with 40% of critical

damping. The controlled rotational motion has a natural frequency of 0.006 IIz with 26% of

critical damping. This controller design would yield very effective isolation on the nominal

system.

The actual close loop poles, however, will be different from the nominal due to the error

in the center--of-mass A. The poles of the actual system are given by the roots of the

characteristic equation

[(m + a)s_ + cs + k][Is2 + ns + b]- [mAl[A{as2 + cs + k)] = 0

For the nominal plant (A = 0), this results in the prescribed natural frequencies and critical

dampings. However, as the center---of-mass error increases, the poles migrate and the system

becomes unstable. For an error as small as 6 mm for this system, instability occurs [12]. A

plot of the pole movement vs. error in center-of-mass is shown in Figure 12. This sensitivity

results from the ill-conditioned character of the designed controller. A proper MIMO
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controller design might remedy this problem. In any case, an analysis of the problem from a

MIMO control perspective would indicate the potential instability and the nature of the

trade--off between performance and robustness.

In the next section, the MIni0 design methods developed at the University of

Virginia are examined in detail. Special attention is given to the issue of

robustness.
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Figure 12: Loci of closed-loop poles as a function of center--of-mass error
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5. MODERN CONTROL THEORY DESIGN

5.1 Modern Control Methods: An Overview

Researchers at the University have investigated the use of Linear Quadratic Regulator

(LQR) and the Kalman-Bucy Filter (KBF) synthesis methods for the design of controllers for

microgravity vibration isolation platforms [13,14,15]. The LQR method produces a state

feedback controller which is optimal with respect to the quadratic (two norm) performance

index

J = _T(j@Qx(jw) + uT(jw)R_(j@ dw

---oo

where Q and R are respectively the symmetric (usually diagonal) state and control weighting

matrices, and _(joJ) and u(j@ are the Fourier transforms of the state and control vectors. The

state (positions and velocities for vibration isolation) satisfies the differential equation

_=Ax+ Bu

The quadratic performance index of LQR is well suited to this problem since vibration

isolation quality is usually measured in terms of root-mean-square. However, it has been

shown by researchers at the University that some modification of the performance function is

necessary to apply this synthesis procedure to microgravity isolation controller design. State

feedback for the isolation problem is feedback of experiment positions, velocities, angles, and

angular velocities. Thus, LQR can only result in (inertial or relative) stiffness and damping

feedback. As was discussed previously, these isolation techniques cannot yield acceptable

isolation performance. Thus, an LQR performance index will not yield a satisfactory controller

unless frequency weighted Q and R matrices are used, or the plant modeI is changed so as

to have an acceleration pseudo-state [12]. Either of these methods results in the

addition of pseudo-states to the state variable model.

are also necessary to achieve robustness. Through

designer can, in essence, shape the control loops.

Frequency weighted Q and R matrices

choice of the weighting functions, the
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The differential equation abovedoesnot include a disturbance term. Consequently,the

resulting controller is optimal with respect to white noise (a weaknessof the L{IRmachinery).

Since the power spectrum of the microgravity environment is not of this shape, the LQR

controller will not be optimal with respect to rejection of the disturbance. Through the

incorporation of a disturbance model (essentially a shaping filter), the LQR problem may be

modified to yield an optimal disturbance accommodating(i.e. rejection) controller. This also

incorporates the addition of pseudo-states to the state variable model. Disturbance

accommodationmay also aid in increasing the controller's robustness through loop

shaping. Through the incorporation of the pseudo--statesfor frequency weighting and

disturbance accommodation,controllers have been designed by University researchersusing

the standard Algebraic Ricatti equations of LQR-KBF. Thesecalculations have been done

usingbatch files written in the MATLAB language[15]. Thesecontrollers are then tested for

robustnesswith respect to structured and unstructured uncertainties using singular value and

structured singular value analysis. These analysis tools are the MIMO equivalent of the

familiar gain margin, phase margin, and root locus robustness tests. Results for a

one--degree---of-freedomproblem are discussedbelow. MIMO vibration isolation researchis

ongoingat the University. Thesemodern control methodsrequire a considerabledegreeof skill

and insight to employ properly.

5.2 Modern Control Results

The one---dimensional problem was first expressed in state---space form, with payload

relative position, relative velocity, and acceleration selected as states. Although many other

state choices could have been made, these three were chosen to minimize the number of states

necessary and to maximize the physical intuition possible. The selection would result in a state

feedback control that respectively modifies the effective umbilical stiffness and

damping, and the effective payload mass--all being familiar, accessible, and intuitive system

parameters. Relative, rather than inertial, position feedback would help to avoid exceeding
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rattlespacelimits; and relative velocity feedbackwould provide a meansof damping out system

resonances. The selection of accelerationas a state was considereddesirable due to insight

gained from the passivecontrol studies. A controller which increaseseffective payload mass

(by negative acceleration feedback) would potentially be able to accomplish disturbance

rejection without unnecessarilysacrificingstability-or performancerobustness.

A secondimportant feature of the problem formulation was the decision to incorporate

disturbancesof two different kinds, the direct (i.e., onboard the experiment) and the indirect

(i.e., acting via the umbilical). It had been observed that reducing the effective umbilical

stiffnesscould aid in indirect disturbancerejection only, but that increasing payload effective

masscould help reject disturbances of both kinds. Although the primary type of disturbance

was considered likely to be the indirect, a means was needed to force the LQR-KBF (also

known as LQG) "machinery" to increase effective mass so as to result in a robust controller.

Including a direct disturbance provided this mechanism.

After completing the problem formulation, the next step was to develop a computer

code for use in design and analysis. A PC-based design code was written in MATLAB to allow

for accommodation of both direct and indirect disturbances. A large selection of frequency

weightings and disturbance accommodation filters was made available to the designer. The

code computes both feedback and observer gains, and also determines the constant feedforward

(preview) gains for which the theory was developed in [16]. Although the feedforward option

remains available, subsequent analysis determined that for the present application the

feedforward gains do not make a significant enough contribution to warrant the additional

controller complexity required. A number of analysis routines were also written to allow the

designer to evaluate the resultant designs for purposes of comparison. The number of system

states, system performance, stability robustness, parameter sensitivity, and observer quality are

items whose comparisons are facilitated by these routines.

With the design and analysis tools in place, the next step was to develop the desired

controller. In order to make the controller as simple as possible, it was decided to begin with
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the basic LQG approach and to add complexity as needed. At each stage of additional

complexity an iterative cycle of design and analysis was employed in an attcmpt to get the

"best" achievable controller at that level of complexity.

The basic LQG approach (no frequency weighting, no disturbance accommodation, no

direct disturbance) yielded a satisfactory controller in terms of performance; but it had almost

no stability robustness to changes in umbilical stiffness from the nominal (as measured by

feedback uncertainty). This lack of robustness was due to the fact that LQG found adding

negative stiffness to be a "cheaper" means of indirect disturbance rejection than adding

effective mass. No frequency weighting was found which could rectify this problem.

A direct white disturbance was added in an attempt to force the LQG design

"machinery" to add effective mass. Although there were some gains in stability robustness this

was due entirely to changes in observer gain matrix L. The feedback gain matrix K remained

unaffected (note that this is fundamental in LQG theory and is not a numerical problem), and

the feedback stability robustness was still unsatisfactory.

Disturbance accommodation, with a lowpass filter applied to a large direct (white)

disturbance, resulted in a controller with excellent feedback- and multiplicative input stability

robustnesses, as measured by singular value checks. The multiplicative output stability

robustness was unacceptably low if cross--coupling was considered possible between states, but

structured singular value checks indicated that without cross--coupling the allowable

multiplicative output uncertainty was quite satisfactory. Since effective stiffness, effective

damping, and effective mass of the controlled system are uncoupled for the true

one-dimensional problem, the stability robustness measures of the system were considered

acceptable. Further, the performance was excellent, easily exceeding thc specifications.

However, the controller gains were still large at higher frequencies where unmodeled system

modes were of concern (see specification #4). It was therefore necessary to use state- and

control frequency weighting in an attempt to force the controller to turn off by approximately

100 ttz (i.e., to reduce loop gain below a magnitude 3f one) so as to avoid e_citing unmodcled
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flexible modes. To reduce the loop gain at the higher frequencies it was necessary in that range

(1) to place a high weight on control, (2) to apply low weights to all three states, and (3) to

reduce the direct disturbance.

At low frequencies the control weighting was left constant (i.e., "flat"), in an attempt to

minimize the number of added pseudostates. However, the resulting closed loop system now

had very poor low frequency stability robustness to parametric uncertainties, even though it

both retained its excellent performance and now provided the desired low controller bandwidth.

A classical design approach to the problem provided a simple solution to the robustness

issue. It was noted that for a controller with acceptable nominal performance the low

frequency asymptote for controller gain could have slope -1 or 0 or greater (Bode-a, log-log

scale). Therefore, the control weighting at DC could be zero (filter slope > 0) and the extended

H2 synthesis "machinery" could be freed to consider finite or infinite DC controller--gain

options. This results, however, in the addition of a pseudostate. This change yielded a

controller that satisfied the design specifications and exhibited good stability robustness to

parametric and to multiplicative input- and output uncertainties. Considering (for the

moment)only single-parameter uncertainties, stability was guaranteed for umbilical stiffness to

within =h99.7% of nominal, and umbilical damping could be essentially unknown. Payload

mass needed to be known only to within =k65.2% of nominal. Having these initial favorable

indicators of system robustness the next step was to reduce the controller size. Further

robustness analysis would then be conducted on the reduced--order controller.

The controller described above was a ninth-order controller (i.e., had nine states), with

payload acceleration as its only required input. Other states and pseudostates were

reconstructed in the observer. To reduce the controller to a smaller order, a routine was

written in MATLAB in order to permit removing high frequency modes (modal truncation) and

weakly controllable and -observable system dynamics [17]. The result of applying this to the

ninth-order controller was a third-order controller that has all the essential features of the

ninth-order one. The loop gain, controller, and transmissibility plots for this reduced
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controller are shown in Figures 13a,b,c. Note from the transmissibility plot that the

transmissibility is unity up to 10 -3 Hz and that it is below 10 .4 at 0.1 Hz. Notice further that

the open loop and closed loop Bode plots merge at about 100 Hz. This is due to the fact that

the controller has essentially "turned off" by that frequency (see Figure 13b).

There are four basic checks that must be made of any controlled system: nominal

stability, nominal stability, robust stability, and robust performance. These four checks are

considered below, consecutively.

The extended H_ synthesis method used for this portion provides an inherent guarantee

of stability for a nominal plant with full state feedback. Further, the "separation principle"

guarantees that for a perfectly known plant a stable asymptotic observer will not destabilize

the system. Thus, nominal stabiIity is assured with the fnll order observer, provided the

observer itself is stable. Reducing the controller order removes this guarantee, but simple

eigenvalue checks verify that both the reduced third-order controller as designed and the

associated controlled system are stable for the nominal plant. A simple check of the loop gain

Bode plot (Figure 13a) confirms the conclusion that the closed loop system is stable, since it is

known that the loop gain is minimum phase.

The second necessary check is of nominal performance. As indicated by the closed-loop

transmissibility plot (Figure 13c) the nominal performance is quite satisfactory. Note that the

"less than 10-2" spec at 0.1 Hz is surpassed by more than an order of magnitude. This

overdesign was intentional, and necessary, since plant modeling errors (open loop system,

sensors, and actuators) will certainly degrade performance margins.

Robust stability measures are necessary to determine whether the closed-loop system

will rem_n stable given the anticipated sensor, actuator, and plant parameter uncertainties.

Three different types of robust stability measures were used, for guaranteeing system stability

for multiplicative input, multiplicative output, and feedback uncertainties below certain levels.

The multiplicative input uncertainty allowable was found to be equivalent to a guaranteed

phase margin (interval) of [---48", +48"], and to a guaranteed _lain margin (interval) of [0.304,
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5.434]. The actual margins are even larger (phase margins: [-55", +55°], gain margins:

[0,+oo]). Since only one plant output is sensed (viz., payload acceleration), the multiplicative

input and output robust stability guarantees are identical. A feedback uncertainty measure

was used to determine guaranteed minimum stability bounds on uncertainties in umbilical

stiffness and damping, and on payload mass. It was found, as noted previously (p. 34), that

closed-loop system stability was guaranteed for single-parameter uncertainties much larger

than anticipated. By considering the feedback uncertainty structure, it was shown that for

simultaneous mass, damping, and stiffness uncertainties of ±20%, -t-100%, and =h69%,

respectively, system stability could be assured. Higher frequency modes of the system were

considered not to be a significant concern since the controller bandwidth was limrted during

design.

Finally, measures were needed of performance robustness. Structured singular value

plots were made to find conservative bounds on multiplicative input (and output) uncertainties

that would not lead to plants with unacceptable performance. Below 10-s Hz it was found that

for combined sensor and actuator uncertainties of up to -i-ll" in phase or of ±19% in gain the

performance can be guaranteed to remain acceptable. At higher frequencies the guarantees are

much better, so that by 220 Hz uncertainties of up to +180 ° in phase or of ±200% in gain are

permissible.

Structured singular value plots were also used in an attempt to find performance

robustness guarantees in the face of known parametric uncertainties, but the effort was only

partly successful. The checks led to the conclusion that for single-parameter uncertainties in

stiffness of ±40% both stability and acceptable performance could be assured. .However,

single-parameter uncertainty bounds found by this method on damping and mass were too

conservative to be useful. Consequently, real parametric studies were conducted on

plant-uncertainty effects on closed-loop performance. It was determined that closed loop

performance appeared acceptable for the various combinations of parametric uncertainties
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examined,with massand stiffnessvaried in the intervals [-50%, +100%] and [-20%, +100%],

respectively, and with damping varied by more than ten times its nominal value.

The above extended H_ synthesis - # analysis approach produced a controller that easily

satisfies the competing demands of the posed 1-D microgravity vibration isolation problem.

Further, unlike the classical approach, it is readily extendable for use on a 3-D problem.

Frequency weighting and disturbance- accommodation were both found to be necessary if H_

synthesis is to be used in involving the posed isolation problem. Their inclusion, along with a

judicious choice of states, provides the designer with a powerful and intuitive set of weapons for

his design arsenal. Disturbance accommodation of a direct disturbance model is necessary to

force the H_ synthesis machinery to avoid negative---stiffness solutions. The result was an

actively controlled system that uses a "smart" form of acceleration feedback to overcome the

robustness problems that commonly plague the basic LQG synthesis approach.
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6. EXPERIMENTAL RIG

6.1 Introduction

The University began construction of a one-degree---of-freedom experimental rig to

demonstrate active microgravity isolation in the fall of 1990. The rig, now completed, was

designed so as to illustrate active isolation of a tethered mass down to very low frequencies

(0.01 ltz). This required both a large-stroke actuator and acceleration feedback as discussed in

Sections 2 and 4. To our knowledge, this is the first microgravity rig to address either tethered

or large---stroke active isolation.

6.2 Rig Description

The experimental rig built at the University of Virginia is shown in Figure 14. The rig

consists of a 75 lb. steel cylinder representing a microgravity experiment, two air dashpots

representing umbilicals, an electrodynamic shaker representing the vibrating experiment rack,

and the large--_troke Lorentz actuator. The steel cylinder is suspended with magnetic supports

so that it may freely move horizontally along its axis [16]. Similar to radial magnetic bearings,

each support consists of four horseshoe electromagnets. Eddy current probes sense the radial

position of the cylinder and complete the magnetic suspension feedback loops supplying

current to the electromagnets. The supports hold the cylinder firmly in place but produce no

friction. When the electromagnetic support system is turned off, the cylinder rests on a pair of

touchdown pedestals.

The electrodynamic shaker (representing the experiment rack aboard the orbiter) has

a long peak-to-peak stroke of 6.25 inches. This is the vibration source from which the steel

cylinder (experiment) must be isolated. The shaker is mounted, via aluminum plates, on a

concrete block resting on the laboratory floor. The shaker can generate sinusoidal, random or

impulse waveforms at frequencies down to DC, thus simulating the disturbances typically

produced on a manned orbiter.
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Fig. 14. Microgravity isolation rig at the University of Virginia

The umbilicals connecting a microgravity experiment to the orbiter are expected to be

flexible hoses and wires. These are modeled by air dashpots with adjustable stiffness and

damping coefficients. The vibration isolation test rig at the University has been designed so

that different kinds of umbilicals may be employed, including actual hoses like those used for

fluid transfer. The large---stroke Lorentz actuator connects the levitated steel cylinder to a

plate connected to the concrete base.

The axial acceleration of the cylinder is sensed off a sensory plate using a very low

frequency accelerometer with a resolution of approximately 1 #g. The accelerometer signal is

fed through a low pass filter and a transconductance bipolar linear amplifier to produce the

required current. This current is applied to the Lorentz actuator to isolate the cylinder from

the disturbances generated by the shaker.
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The background vibration levels on the concrete base on which the cylinder is mounted

have been measured over several twenty-four-hour periods, in both the horizontal and the

vertical directions. These vibrations are of the order of milli---g's, the quietest period occurring

from late in the night to early in the morning [18]. Operating at this time will yield the highest

degree of reproducibility in our results.

6.3 Experimental Results

Preliminary results have been obtained for vibration isolation in the (1-3) Hz

range. An air dashpot (umbilical) was the only direct connection between the shaker

armature (space platform) and the cylinder (science experiment requiring isolation).

An HP Structural Dynamics Analyzer was used for data acquisition. Figure 15 is a

typical example illustrating the isolation obtained using simple lowpass acceleration

feedback. The shaker generated a sinusoidal armature motion at a frequency of 2 Hz.

For this case, the shaker's acceleration had an amplitude of 14,000#g. The cylinder

had a peak acceleration amplitude of appro_mately 7,000 _g with the controller "off"

and 465#gwith the controller "on". Therefore, a fifteen-fold reduction of vibration

has been obtained through acceleration feedback.

The control system is nov being modified to improve the isolation capability of

the controller.
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7. CONCLUSION

The University has made substantial progress in many areas of active microgravity

isolation in the last three years. We have primarily addressed the design of actuators and

control systems for the active isolation of tethered experiments. In actuator research, our work

has examined electrodynamic and electromagnetic actuators for single and

multiple-degree---of-freedom isolation, and the use of coarse-fine systems for the practical

extension of electromagnetic isolation to large strokes. For control system design, we have

addressed performance limitations, robustness issues, and the use of H2 methods for synthesis.

Finally, we have constructed a single---degree--of-freedom test rig and demonstrated active

isolation of a tethered mass through acceleration feedback. Our research is ongoing and

several important results are still to be achieved. The University looks forward to continuing

its work in microgravity vibration isolation and to continued collaboration with NASA Lewis

Research Center.

To make a microgravity environment available for space experiments in the near

future, we recommend the following:

* The umbilicals to be used to service the experiments need to be identified and

their properties need to be examined, ks the research conducted at the

University over the last three years demonstrates, the difficulty of achieving a

microgravity environment is very directly related to the umbilical's

properties. For multiple-degree-of-freedom isolation, the uncertain coupling

of degrees---of-freedom through the umbilical may present a challenge to

controller design. For this reason, it is also recommended that controlled

nmbilical_ be examined.

* The issue of direct disturbances needs to be addressed. Acceleration feedback,

like that developed in our work, will be effective against direct disturbances

as long as the frequencies of these disturbances are below that of the first

flexible mode of the experiment structure. Perhaps a specification for
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experiment designers on the frequencies and amplitudes (or power spectrum) of

allowable direct disturbances can be written. Such a specification would

require that direct disturbances be acceptable without active vibration control

for frequencies near and above the first flexible mode. This mayhelp focus

attention on the issue of direct disturbances and experiment design so that any

required technology development may begin soon. For example, such a

specification may result in the inclusion of passive vibration isolation mounts

onboard the experiment package to isolate the sensitive process from high

frequency direct disturbances produced by auxiliary equipment (e.g., pumps,

fans, shutters, valves).

The isolation frequency and amplitude requirements of microgravity experiments

and the microgravity vibration environment of the space shuttle and space

station need to be better characterized. This is very important in the low

frequency (0-1 hz) range. Only when these quantities are specified can the

required stroke of the actuator be determined. If strokes larger than 1 cm are

necessary, a coarse-fine actuation system should be used. In this case, a

technology development program needs to be started. The authors believe that a

significant degree of development may be required for such a coarse-fine

actuat ion scheme.

I six-degree-of-freedom microgravity isolation system needs to be flown aboard

the space shuttle in the near future. Only when we start developing actual

hardware and software for an orbiting isolation system will we make significant

progress toward practical isolation for space experiments. _ile we have

learned a great deal from the experiments conducted so far, many of the

difficulties that remain cannot be fully simulated or anticipated using ground

based hard_are.
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ABSTRACT

This report summarizes the research performed at the University (; Virginia under

Grant No. NAG-3-909 from NASA Lewis Research Center. This research on microgravity

vibration isolation was focused in three areas: (1) the development of new activators for use in

microgravity isolation, (2) the design of controllers for multiple-degree-of-freedom active

isolation, and (3) the construction of a single-degree-of-freedom test rig with umbilicals.

Described herein are the design and testing of a large stroke linear actuator; the conceptual

design and analysis of a redundant coarse-fine six-degree---of-freedoEn actuator; an

investigation of the control issues of active microgravity isolation; a methodology for the design

of multiple-degree--of-freedom isolation control systems using modern control theory; and the

design and testing of a single-degree---of-freedom test rig with umbilicals.
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1. INTRODUCTION

The University of Virginia began research in microgravity vibration i_olation in 1988

under a three-year grant from NASA Lewis Research Center. The goals of this project were

(1) to develop new actuators for use in microgravity isolation, (2) to investigate the design of

controllers for multiple---degree--of-freedom (MDOF) active isolation, and (3) to construct a

single---degree-_f-freedom (SDOF) test rig with umbilicals. The Principal Inv_,stigator for the

first two years of this project was Dr. Paul E. Allaire. Dr. Carl R. Kn_pe became the

Principal Investigator for the final year of the grant. Other faculty working with the project

included Dr. Robert H. Humphris and Dr. David W. Lewis. Several graduat_ students have

aided in this effort: Mr. Bibhuti Banerjee in actuator and test rig desig1_, Mr. R. David

Hampton in the multivariable control theory of active isolation, and Mr. A. Peter Allan in

actuator design and instrumentation. Several University personnel have w_,rked at NASA

Lewis during the summers, and contact between NASA and the University h:t_ been frequent.

This final report on the contract reviews the research performed over the tt_rce years of the

grant. Both experimental and theoretical work in microgravity isolation __ntinues at the

University. The University aspires to become a center of excellence in active vibration

isolation systems for space applications.

The next six sections discuss the research efforts

isolation technology needs of the microgravity community.

of the University in meeting the

In Section 2, the d_,sign and testing

of a single---degree---of-freedom, large-stroke actuator are reviewed. Section 3 examines

multiple---degree---of-freedom actuator design. A survey of published designs is presented and a

new coarse-fine actuator is proposed and analyzed. In Section 4, the design _f active isolation

control systems is examined. Results and discussion of the University's design methodology,

frequency-shaped Linear Quadratic Regulator and Kalman-Bucy Filter synthesis, are given in

Section 5.

isolation

isolation

In Section 6, the design and early experimental results of the micr_ravity vibration

test rig are examined. Experimental results demonstrate that active vibration

of experiments with umbilicals can be obtained using loop-shaped acceleration
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feedback. Section 7 concludes this final report, with a summary of our results and

recommendations for future research. An appendix contains all papers presented, published, or

submitted during the grant.


